Hyperfunctions
Zbornik radova, Tome 7 (1997) no. 15, p. 71 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

M. Sato ([27], [28]) introduced a new class of generalized functions, called hyperfunctions, as the n-th derived sheaf of the sheaf of holomorphic functions. He left without proof many details in these papers. To this day, subsequent papers of mathematicians, especially Japanese, completed these "gaps" ([3], [10], [13], [15], [18], [20], [30]). Hyperfunctions have many important properties which are indispensable for an exquisite theory of partial differential equations, microfunctions, micro-local analysis, Fourier transform (cf. [13]). They became a major tool of several areas of analysis and applications.
@article{ZR_1997_7_15_a2,
     author = {B. Stankovic},
     title = {Hyperfunctions},
     journal = {Zbornik radova},
     pages = {71 },
     publisher = {mathdoc},
     volume = {7},
     number = {15},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1997_7_15_a2/}
}
TY  - JOUR
AU  - B. Stankovic
TI  - Hyperfunctions
JO  - Zbornik radova
PY  - 1997
SP  - 71 
VL  - 7
IS  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1997_7_15_a2/
LA  - en
ID  - ZR_1997_7_15_a2
ER  - 
%0 Journal Article
%A B. Stankovic
%T Hyperfunctions
%J Zbornik radova
%D 1997
%P 71 
%V 7
%N 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1997_7_15_a2/
%G en
%F ZR_1997_7_15_a2
B. Stankovic. Hyperfunctions. Zbornik radova, Tome 7 (1997) no. 15, p. 71 . http://geodesic.mathdoc.fr/item/ZR_1997_7_15_a2/