The Spectral Geometry of Reimannian Submersions
Zbornik radova, Tome 6 (1997) no. 14, p. 36 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study the spectral geometry of a Riemannian submersion $\pi : Z -> Y$. We give necessary and sufficient conditions that $\pi$ preserve the eigenforms of the Laplacian. We show that if the pull-back of an eigenform is an eigenform, then the eigenvalue can only increase. If $G$ is a compact, connected Lie group with $H^1(G;R)\neq 0$, we give examples of principal $G$ bundles over homogeneous manifolds where the pull-back of an eigenform from the base is an eigenform on the total space with different eigenvalue.
@article{ZR_1997_6_14_a3,
     author = {Peter B. Gilkey and John V. Leahy and Jeong Hyeong Park},
     title = {The {Spectral} {Geometry} of {Reimannian} {Submersions}},
     journal = {Zbornik radova},
     pages = {36 },
     publisher = {mathdoc},
     volume = {6},
     number = {14},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a3/}
}
TY  - JOUR
AU  - Peter B. Gilkey
AU  - John V. Leahy
AU  - Jeong Hyeong Park
TI  - The Spectral Geometry of Reimannian Submersions
JO  - Zbornik radova
PY  - 1997
SP  - 36 
VL  - 6
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a3/
LA  - en
ID  - ZR_1997_6_14_a3
ER  - 
%0 Journal Article
%A Peter B. Gilkey
%A John V. Leahy
%A Jeong Hyeong Park
%T The Spectral Geometry of Reimannian Submersions
%J Zbornik radova
%D 1997
%P 36 
%V 6
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a3/
%G en
%F ZR_1997_6_14_a3
Peter B. Gilkey; John V. Leahy; Jeong Hyeong Park. The Spectral Geometry of Reimannian Submersions. Zbornik radova, Tome 6 (1997) no. 14, p. 36 . http://geodesic.mathdoc.fr/item/ZR_1997_6_14_a3/