Remarks on the Entropy Equation
Zbornik radova, Tome 1 (1976) no. 9, p. 31
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the paper [4] A. Kamicute{n}ski and J. Mikusicute{n}ski have proved the following
Theorem: If a function $H(x,y,z)$ is continuous, symmetric and positively homogeneous (of order 1) in the domain
$D={(x,y,z)|x,y,z\geq 0, xy+yz+zx>0}$
and satisfied in the order of $D$ the functional equation
$H(x,y,z)=H(x+y,0,z)+H(x,y,0)$
then
$H(x,y,z)=c[(x+y+z)n(x+y+z)-xn x-yn y= zn z],$
where $c$ is a real constant and $0\ln 0=0$
@article{ZR_1976_1_9_a4,
author = {Z. Dar\'oczy},
title = {Remarks on the {Entropy} {Equation}},
journal = {Zbornik radova},
pages = {31 },
publisher = {mathdoc},
volume = {1},
number = {9},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a4/}
}
Z. Daróczy. Remarks on the Entropy Equation. Zbornik radova, Tome 1 (1976) no. 9, p. 31 . http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a4/