Remarks on the Entropy Equation
Zbornik radova, Tome 1 (1976) no. 9, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the paper [4] A. Kamicute{n}ski and J. Mikusicute{n}ski have proved the following Theorem: If a function $H(x,y,z)$ is continuous, symmetric and positively homogeneous (of order 1) in the domain $D={(x,y,z)|x,y,z\geq 0, xy+yz+zx>0}$ and satisfied in the order of $D$ the functional equation $H(x,y,z)=H(x+y,0,z)+H(x,y,0)$ then $H(x,y,z)=c[(x+y+z)n(x+y+z)-xn x-yn y= zn z],$ where $c$ is a real constant and $0\ln 0=0$
@article{ZR_1976_1_9_a4,
     author = {Z. Dar\'oczy},
     title = {Remarks on the {Entropy} {Equation}},
     journal = {Zbornik radova},
     pages = {31 },
     publisher = {mathdoc},
     volume = {1},
     number = {9},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a4/}
}
TY  - JOUR
AU  - Z. Daróczy
TI  - Remarks on the Entropy Equation
JO  - Zbornik radova
PY  - 1976
SP  - 31 
VL  - 1
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a4/
LA  - en
ID  - ZR_1976_1_9_a4
ER  - 
%0 Journal Article
%A Z. Daróczy
%T Remarks on the Entropy Equation
%J Zbornik radova
%D 1976
%P 31 
%V 1
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a4/
%G en
%F ZR_1976_1_9_a4
Z. Daróczy. Remarks on the Entropy Equation. Zbornik radova, Tome 1 (1976) no. 9, p. 31 . http://geodesic.mathdoc.fr/item/ZR_1976_1_9_a4/