Cyclic scheduling problems for multiprocessor system
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 66-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the multiprocessors scheduling problem, when a set of jobs $V$ is done on $m$ identical parallel processors and set of jobs $V$ is to be repeated an infinitely number of times. The goal is to generate a periodic schedule, which is a schedule of one iteration that is repeated within a fixed time interval, which called the period (or cycle time). The aim of cyclic scheduling is to find a periodic schedule with the minimum period. We consider Periodic Scheduling on Identical Processors problem. Precedence constraints between jobs are represented by an uniform graph $G$. We propose algorithms for constructing cyclic schedules for four problems with parallel processors: the problem with unit processing times and three problems with arbitrary processing times. The problem with unit processing times and the problem with preemptions can be solved in polynomial time.
@article{ZNSL_2024_539_a3,
     author = {N. S. Grigorieva},
     title = {Cyclic scheduling problems for multiprocessor system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--85},
     year = {2024},
     volume = {539},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a3/}
}
TY  - JOUR
AU  - N. S. Grigorieva
TI  - Cyclic scheduling problems for multiprocessor system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 66
EP  - 85
VL  - 539
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a3/
LA  - ru
ID  - ZNSL_2024_539_a3
ER  - 
%0 Journal Article
%A N. S. Grigorieva
%T Cyclic scheduling problems for multiprocessor system
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 66-85
%V 539
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a3/
%G ru
%F ZNSL_2024_539_a3
N. S. Grigorieva. Cyclic scheduling problems for multiprocessor system. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 66-85. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a3/

[1] E. Levner, V. Kats, V. E. Levit, “An improved algorithm for a cyclic robotic scheduling problem”, Eur. J. Oper. Res., 97 (1997), 500–508 | DOI | Zbl

[2] V. Kats, E. Levner, “Cyclic scheduling on a robotic production line”, J. Scheduling, 5 (2002), 23–41 | DOI | MR | Zbl

[3] W. Kubiak, “Solution of the Liu-Layland problem via bottleneck just-in-time sequencing”, J. Scheduling, 8:4 (2005), 295–302 | DOI | MR | Zbl

[4] C. Hanen,, A. Munier, “A study of the cyclic scheduling problem on parallel processors”, Discrete Appl. Math., 57 (1995), 167–192 | DOI | MR | Zbl

[5] A. Munier, “The complexity of a cyclic scheduling problem with identical machines and precedence constraints”, Eur. J. Oper. Res., 91:3 (1996), 471–480 | DOI | MR | Zbl

[6] P. Brucker , T. Kampmeyer, “A general model for cyclic machine scheduling problems”, Discret. Appl. Math., 156:13 (2008), 2561–2572 | DOI | MR | Zbl

[7] J. R. L. Graham, E. L. Lawner, R. Kan, Ann. of Disc. Math., 5 (1979), 287 | DOI | Zbl

[8] J. Ullman, J. Comp. Sys. Sci, 171 (1975), 384 | DOI

[9] E. G. Coffman (ed.), Computer and Job-Shop Scheduling Theory, John Wiley, 1978 | MR

[10] E. G. Coffman, R. L. Graham, “Optimal schedule for two-processor systems”, Acta Informat, 1 (1972), 200–213 | DOI | MR

[11] C. Hanen, A. Munier, Cyclic scheduling on parallel processors: an overview, Scheduling theory and its applications, eds. Chretienne Philippe, Coffman Edward G, Lenstra Jan Karel, Liu Zhen, John Wiley and Sons, New York, 1994 | MR

[12] B. Dupont de Dinechin, A. M. Kordon, “Converging to periodic schedules for cyclic scheduling problems with resources and deadlines”, Computers Operations Research, 51 (2014), 227–236 | DOI | MR | Zbl

[13] R. L. Graham, “Bounds for certain multiprocessing anomalies”, Bell System Tech. J., 45 (1966), 1563–1581 | DOI

[14] N. Grigoreva, “Cyclic Scheduling for Parallel Processors with Precedence Constrains”, The 2 International Scientific and Practical Conference on Mathematical modeling, Programming and Applied mathematics (2020, 5–6 November, Veliky Novgorod, Russia), J. Physics. Conf. Ser., 2020

[15] N. Shirvani, R. Ruiz, S. Sharokh, “Cyclic scheduling of perishable products in parallel machine with release dates, due dates and deadline”, Int. J. Production Economics, 156 (2014), 1–12 | DOI

[16] A. Munier, “The complexity of a cyclic scheduling problem with identical machines and precedence constraints”, Eur. J. Oper. Res., 91:3 (1996), 471–480 | DOI | MR | Zbl

[17] R. R. Muntz, E. G. Coffman, “Preemptive scheduling of real-time tasks on multiprocessor systems”, J. Assoc. Comput. Mach., 17:2 (1970), 324–338 | DOI | MR | Zbl

[18] P. Sucha, Z. Hanzalek, “Deadline constrained cyclic scheduling on pipelined dedicated processors considering multiprocessor tasks and changeover times”, Math. Comput. Model, 47:9–10 (2008), 925–942 | DOI | MR | Zbl