$\Phi$-inequalities on domains
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 128-150
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find necessary and sufficient conditions on the function $\Phi$ for the inequality $$ \Big|\int_\Omega \Phi(K*f)\Big|\lesssim \|f\|_{L_1(\mathbb{R}^d)}^p $$ to be true. Here $K$ is a (possibly vector valued) kernel positive homogeneous of degree $\alpha - d$, $\Phi$ is a $p$-homogeneous function, and $p=d/(d-\alpha)$. The domain $\Omega\subset \mathbb{R}^d$ is either bounded with $C^{1,\beta}$ smooth boundary for some $\beta > 0$ or a halfspace in $\mathbb{R}^d$. As a corollary, we describe the functions $\Phi\colon \mathbb{R}^d \to \mathbb{R}$ positive homogeneous of order $d/(d-1)$ that are suitable for the bound $$ \Big|\int_\Omega \Phi(\nabla u)\Big|\lesssim \int_\Omega |\Delta u|. $$
            
            
            
          
        
      @article{ZNSL_2024_537_a6,
     author = {D. Stolyarov},
     title = {$\Phi$-inequalities on domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--150},
     publisher = {mathdoc},
     volume = {537},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/}
}
                      
                      
                    D. Stolyarov. $\Phi$-inequalities on domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 128-150. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/