$\Phi$-inequalities on domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 128-150
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find necessary and sufficient conditions on the function $\Phi$ for the inequality $$ \Big|\int_\Omega \Phi(K*f)\Big|\lesssim \|f\|_{L_1(\mathbb{R}^d)}^p $$ to be true. Here $K$ is a (possibly vector valued) kernel positive homogeneous of degree $\alpha - d$, $\Phi$ is a $p$-homogeneous function, and $p=d/(d-\alpha)$. The domain $\Omega\subset \mathbb{R}^d$ is either bounded with $C^{1,\beta}$ smooth boundary for some $\beta > 0$ or a halfspace in $\mathbb{R}^d$. As a corollary, we describe the functions $\Phi\colon \mathbb{R}^d \to \mathbb{R}$ positive homogeneous of order $d/(d-1)$ that are suitable for the bound $$ \Big|\int_\Omega \Phi(\nabla u)\Big|\lesssim \int_\Omega |\Delta u|. $$
@article{ZNSL_2024_537_a6,
     author = {D. Stolyarov},
     title = {$\Phi$-inequalities on domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--150},
     year = {2024},
     volume = {537},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/}
}
TY  - JOUR
AU  - D. Stolyarov
TI  - $\Phi$-inequalities on domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 128
EP  - 150
VL  - 537
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/
LA  - ru
ID  - ZNSL_2024_537_a6
ER  - 
%0 Journal Article
%A D. Stolyarov
%T $\Phi$-inequalities on domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 128-150
%V 537
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/
%G ru
%F ZNSL_2024_537_a6
D. Stolyarov. $\Phi$-inequalities on domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 128-150. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/

[1] J. Bourgain, H. Brezis, “New estimates for the Laplacian, the div-curl, and related Hodge systems”, C. R. Math. Acad. Sci. Paris, 338:7 (2004), 539–543 | DOI | MR | Zbl

[2] F. Gmeineder, B. Raiţă, “Embeddings for $\Bbb{A}$-weakly differentiable functions on domains”, J. Funct. Anal., 277:12 (2019), 108278, 33 pp. | DOI | MR | Zbl

[3] F. Gmeineder, B. Raiţă, J. Van Schaftingen, “Boundary ellipticity and limiting $\rm L^1$-estimates on halfspaces”, Adv. Math., 439 (2024), 109490, 25 pp. | DOI | MR | Zbl

[4] V. Maz'ya, “Estimates for differential operators of vector analysis involving $L^1$-norm”, J. Eur. Math. Soc. (JEMS), 12:1 (2010), 221–240 | DOI | MR | Zbl

[5] V. Maz'ya, “Seventy five (thousand) unsolved problems in analysis and partial differential equations”, Integral Equations Operator Theory, 90:2 (2018), 25, 44 pp. | DOI | MR | Zbl

[6] V. Maz'ya, T. Shaposhnikova, “A collection of sharp dilation invariant integral inequalities for differentiable functions”, Sobolev spaces in mathematics. I, International Mathematical Series, 8, Springer, New York, 2009, 223–247 | DOI | MR | Zbl

[7] D. Spector, “New directions in harmonic analysis on $L^1$”, Nonlinear Anal., 192 (2020), 111685, 20 pp. | DOI | MR | Zbl

[8] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, 1993, xiv+695 pp. | MR | Zbl

[9] D. Stolyarov, Fractional integration of measures: Maz'ya's ${\Phi}$-inequalities, Annali della Scuola normale superiore di Pisa (to appear) , arXiv: 2109.08014

[10] D. Stolyarov, “On Maz'ya's $\Phi$-inequalities for martingale fractional integration and their Bellman functions”, Michigan Math. J., 74:3 (2024), 509–526 | DOI | MR | Zbl

[11] M. E. Taylor, Partial Differential Equations, v. II, Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996 | MR | Zbl

[12] J. Van Schaftingen, “Limiting Sobolev inequalities for vector fields and canceling linear differential operators”, J. Eur. Math. Soc. (JEMS), 15:3 (2013), 877–921 | DOI | MR | Zbl

[13] J. Van Schaftingen, “Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations”, J. Fixed Point Theory Appl., 15:2 (2014), 273–297 | DOI | MR | Zbl

[14] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, 1971 | MR

[15] S. Sobolev, “Ob odnoi teoreme funktsionalnogo analiza”, Matem sb., 4(46) (1938), 471–497 | Zbl

[16] D. M. Stolyarov, “Neravenstvo Khardi–Littlvuda–Soboleva v sluchae $p=1$”, Matem sb., 213:6 (2022), 125–174 | DOI | MR | Zbl