$\Phi$-inequalities on domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 128-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We find necessary and sufficient conditions on the function $\Phi$ for the inequality $$ \Big|\int_\Omega \Phi(K*f)\Big|\lesssim \|f\|_{L_1(\mathbb{R}^d)}^p $$ to be true. Here $K$ is a (possibly vector valued) kernel positive homogeneous of degree $\alpha - d$, $\Phi$ is a $p$-homogeneous function, and $p=d/(d-\alpha)$. The domain $\Omega\subset \mathbb{R}^d$ is either bounded with $C^{1,\beta}$ smooth boundary for some $\beta > 0$ or a halfspace in $\mathbb{R}^d$. As a corollary, we describe the functions $\Phi\colon \mathbb{R}^d \to \mathbb{R}$ positive homogeneous of order $d/(d-1)$ that are suitable for the bound $$ \Big|\int_\Omega \Phi(\nabla u)\Big|\lesssim \int_\Omega |\Delta u|. $$
@article{ZNSL_2024_537_a6,
     author = {D. Stolyarov},
     title = {$\Phi$-inequalities on domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--150},
     publisher = {mathdoc},
     volume = {537},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/}
}
TY  - JOUR
AU  - D. Stolyarov
TI  - $\Phi$-inequalities on domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 128
EP  - 150
VL  - 537
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/
LA  - ru
ID  - ZNSL_2024_537_a6
ER  - 
%0 Journal Article
%A D. Stolyarov
%T $\Phi$-inequalities on domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 128-150
%V 537
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/
%G ru
%F ZNSL_2024_537_a6
D. Stolyarov. $\Phi$-inequalities on domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 128-150. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a6/