On the M. Kac problem with augmented data
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 79-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Omega$ be a bounded plane domain. As is known, the spectrum $0<\lambda_1<\lambda_2\leqslant\dots$ of its Dirichlet Laplacian $L=-\Delta\upharpoonright[H^2(\Omega)\cap H^1_0(\Omega)]$ does not determine $\Omega$ (up to isometry). By this, a reasonable version of the M. Kac problem is to augment the spectrum with relevant data that provide the determination. To give the spectrum is to represent $L$ in the form $\tilde L=\Phi L\Phi^*={\rm diag }\{\lambda_1,\lambda_2,\dots\}$ in the space ${\mathbf l}_2$, where $\Phi\colon L_2(\Omega)\to{\mathbf l}_2$ is the Fourier transform. Let $\mathscr K=\{h\in L_2(\Omega) | \Delta h=0 {\rm\ into\ } \Omega\}$ be the harmonic function subspace, $\tilde{\mathscr K}=\Phi\mathscr K\subset{\mathbf l}_2$. We show that, in a generic case, the pair $\tilde L,\tilde{\mathscr K}$ determines $\Omega$ up to isometry, what holds not only for the plain domains (drums) but for the compact Riemannian manifolds of arbitrary dimension, metric, and topology. Thus, the subspace $\tilde{\mathscr K}\subset{\mathbf l}_2$ augments the spectrum, making the problem uniquely solvable.
@article{ZNSL_2024_536_a4,
     author = {M. I. Belishev and A. F. Vakulenko},
     title = {On the {M.} {Kac} problem with augmented data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--95},
     year = {2024},
     volume = {536},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a4/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. F. Vakulenko
TI  - On the M. Kac problem with augmented data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 79
EP  - 95
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a4/
LA  - ru
ID  - ZNSL_2024_536_a4
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. F. Vakulenko
%T On the M. Kac problem with augmented data
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 79-95
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a4/
%G ru
%F ZNSL_2024_536_a4
M. I. Belishev; A. F. Vakulenko. On the M. Kac problem with augmented data. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 79-95. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a4/

[1] M. I. Belishev, “K zadache M. Katsa o vosstanovlenii formy oblasti po spektru zadachi Dirikhle”, Zap. nauchn. semin. LOMI, 173, 1988, 30–41 | Zbl

[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[3] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl

[4] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskikh prostranstv”, Funkts. analiz i ego pril., 53:2 (2019), 3–10 | DOI | MR | Zbl

[5] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskogo prostranstva s meroi i ee prilozhenie”, Matem. Sb., 211:4 (2020), 44–62 | DOI | MR | Zbl

[6] G. Birkgof, Teoriya reshetok, Nauka, M., 1984

[7] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya sasosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg–M.–Krasnodar, 2010

[8] P. Buser, J. Conway, K. D. Semmler, “Some planar isospectral domains”, Int. Math. Res. Notices, 9 (1994), 391–400 | DOI | MR | Zbl

[9] V. A. Derkach, M. M. Malamud, “Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi”, Trudy instituta matematiki NAN Ukrainy, 104 (2017)

[10] O. Giraud, K. Shas, “Hearing shapes of drums – mathematical and physical aspects of isospectrality”, Reviews of Modern Physics, 82 (2010), 2213–2255 | DOI

[11] A. V. Shtraus, “Funktsionalnye modeli i obobschennye spektralnye funktsii simmetricheskikh operatorov”, Algebra i Analiz, 16:5 (1999), 1–76