The existence of root subgroup translated by a given element into its opposite. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 147-151

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be a simply-laced root system, $|K|>5$, $G = G_{ad}(\Phi,K)$ the adjoint group of type $\Phi$ over $K$. Then for every non-trivial element $g\in G$ there exists a root element $x$ of the Lie algebra of $G$ such that $x$ and $gx$ are opposite.
@article{ZNSL_2024_531_a8,
     author = {I. M. Pevzner},
     title = {The existence of root subgroup translated by a given element into its opposite. {II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--151},
     publisher = {mathdoc},
     volume = {531},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a8/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - The existence of root subgroup translated by a given element into its opposite. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 147
EP  - 151
VL  - 531
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a8/
LA  - ru
ID  - ZNSL_2024_531_a8
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T The existence of root subgroup translated by a given element into its opposite. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 147-151
%V 531
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a8/
%G ru
%F ZNSL_2024_531_a8
I. M. Pevzner. The existence of root subgroup translated by a given element into its opposite. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 147-151. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a8/