The existence of root subgroup translated by a given element into its opposite. II
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 147-151
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Phi$ be a simply-laced root system, $|K|>5$, $G = G_{ad}(\Phi,K)$ the adjoint group of type $\Phi$ over $K$. Then for every non-trivial element $g\in G$ there exists a root element $x$ of the Lie algebra of $G$ such that $x$ and $gx$ are opposite.
			
            
            
            
          
        
      @article{ZNSL_2024_531_a8,
     author = {I. M. Pevzner},
     title = {The existence of root subgroup translated by a given element into its opposite. {II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--151},
     publisher = {mathdoc},
     volume = {531},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a8/}
}
                      
                      
                    I. M. Pevzner. The existence of root subgroup translated by a given element into its opposite. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 147-151. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a8/