Voir la notice du chapitre de livre
@article{ZNSL_2024_531_a7,
author = {V. V. Nesterov and M. Zhang},
title = {Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. {I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--146},
year = {2024},
volume = {531},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a7/}
}
V. V. Nesterov; M. Zhang. Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 127-146. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a7/
[1] A. M. Cohen, H. Cuypers, H. Sterk, “Linear groups generated by reflection tori”, Canad. J. Math., 51:6 (1999), 1149–1174 | DOI | MR | Zbl
[2] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al, 1989 | MR | Zbl
[3] V. V. Nesterov, “Extraction of small rank unipotent elements in $\mathrm{GL}(4,K)$”, Zap. Nauch. Semin. POMI, 492 (2020), 134–148 | MR
[4] V. V. Nesterov, N. A. Vavilov, “Pairs of microweight tori in $\mathrm{GL}_n$”, Chebyshevskii sbornik, 21:3 (2020), 256–266 | MR
[5] N. A. Vavilov, “Subgroups of Chevalley groups containing a maximal torus”, Trudy Leningr. Mat. Obsch., 1 (1990), 64–109 | MR
[6] N. A. Vavilov, “Geometry of $1$-tori in $\mathrm{GL}_n$”, St. Petersburg Math. J., 19:3 (2008), 407–429 | DOI | MR | Zbl
[7] N. A. Vavilov, “Weight elements of Chevalley groups”, Algebra i Analis, 20:1 (2008), 34–85 | MR
[8] N. A. Vavilov, V. V. Nesterov, “Geometry of microweight tori”, Vladikavkaz. Mat. Zh., 10:1 (2008), 10–23 | MR | Zbl
[9] N. A. Vavilov, V. V. Nesterov, “Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(5,K)$”, Zap. Nauch. Semin. POMI, 522, 2023, 8–45 | MR