Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 127-146
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is the third one in the series of the works dedicated to the geometry of $2$-tori, i.e. subgroups conjugate to the diagonal subgroup of the form $\big\{\mathrm{diag}\,(\varepsilon,\varepsilon,1,\ldots,1), \varepsilon\in K^*\big\}$, in the general linear group $\mathrm{GL}(n,K)$ over the field $K$. In the first one we proved a reduction theorem establishing that a pair of $2$-tori is conjugate to such a pair in $\mathrm{GL}(6,K)$, and classified such pairs that cannot be embedded in $\mathrm{GL}(5,K)$. In the second we describe the orbits and spans of $2$-tori in $\mathrm{GL}(5,K)$, that cannot be embedded in $\mathrm{GL}(4,K)$. Here we consider the most difficult case of $\mathrm{GL}(4,K)$ and classify the orbits of $\mathrm{GL}(4,K)$ acting by simultaneous conjugation on pairs of $2$-tori.
@article{ZNSL_2024_531_a7,
     author = {V. V. Nesterov and M. Zhang},
     title = {Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. {I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--146},
     year = {2024},
     volume = {531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a7/}
}
TY  - JOUR
AU  - V. V. Nesterov
AU  - M. Zhang
TI  - Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 127
EP  - 146
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a7/
LA  - en
ID  - ZNSL_2024_531_a7
ER  - 
%0 Journal Article
%A V. V. Nesterov
%A M. Zhang
%T Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. I
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 127-146
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a7/
%G en
%F ZNSL_2024_531_a7
V. V. Nesterov; M. Zhang. Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(4,K)$. I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 127-146. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a7/

[1] A. M. Cohen, H. Cuypers, H. Sterk, “Linear groups generated by reflection tori”, Canad. J. Math., 51:6 (1999), 1149–1174 | DOI | MR | Zbl

[2] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al, 1989 | MR | Zbl

[3] V. V. Nesterov, “Extraction of small rank unipotent elements in $\mathrm{GL}(4,K)$”, Zap. Nauch. Semin. POMI, 492 (2020), 134–148 | MR

[4] V. V. Nesterov, N. A. Vavilov, “Pairs of microweight tori in $\mathrm{GL}_n$”, Chebyshevskii sbornik, 21:3 (2020), 256–266 | MR

[5] N. A. Vavilov, “Subgroups of Chevalley groups containing a maximal torus”, Trudy Leningr. Mat. Obsch., 1 (1990), 64–109 | MR

[6] N. A. Vavilov, “Geometry of $1$-tori in $\mathrm{GL}_n$”, St. Petersburg Math. J., 19:3 (2008), 407–429 | DOI | MR | Zbl

[7] N. A. Vavilov, “Weight elements of Chevalley groups”, Algebra i Analis, 20:1 (2008), 34–85 | MR

[8] N. A. Vavilov, V. V. Nesterov, “Geometry of microweight tori”, Vladikavkaz. Mat. Zh., 10:1 (2008), 10–23 | MR | Zbl

[9] N. A. Vavilov, V. V. Nesterov, “Subgroups generated by a pair of $2$-tori in $\mathrm{GL}(5,K)$”, Zap. Nauch. Semin. POMI, 522, 2023, 8–45 | MR