Overgroups of elementary groups in polyvector representations
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 101-116
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We initiate the study of subgroups $H$ of the general linear group $\mathrm{GL}_{\binom{n}{m}}(R)$ over a commutative ring $R$ that contain the $m$-th exterior power of an elementary group $\bigwedge^m\mathrm{E}_n(R)$. Each such group $H$ corresponds to a uniquely defined level $(A_0,\dots,A_{m-1})$, where $A_0,\dots,A_{m-1}$ are ideals of $R$ with certain relations. In the crucial case of the exterior squares, we state the subgroup lattice to be standard. In other words, for $\bigwedge^2\mathrm{E}_n(R)$ all intermediate subgroups $H$ are parametrized by a single ideal of the ring $R$. Moreover, we characterize $\bigwedge^m\mathrm{GL}_n(R)$ as the stabilizer of a system of invariant forms. This result is classically known for algebraically closed fields, here we prove the corresponding group scheme to be smooth over $\mathbb{Z}$. So the last result holds over arbitrary commutative rings.
@article{ZNSL_2024_531_a5,
     author = {R. A. Lubkov},
     title = {Overgroups of elementary groups in polyvector representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--116},
     year = {2024},
     volume = {531},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a5/}
}
TY  - JOUR
AU  - R. A. Lubkov
TI  - Overgroups of elementary groups in polyvector representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 101
EP  - 116
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a5/
LA  - ru
ID  - ZNSL_2024_531_a5
ER  - 
%0 Journal Article
%A R. A. Lubkov
%T Overgroups of elementary groups in polyvector representations
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 101-116
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a5/
%G ru
%F ZNSL_2024_531_a5
R. A. Lubkov. Overgroups of elementary groups in polyvector representations. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 101-116. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a5/

[1] T. C. Burness and D. M. Testerman, “Irreducible Subgroups of Simple Algebraic Groups - A Survey”, Groups (St Andrews 2017 Birmingham), Cambridge University Press, 2019, 230–260 | MR | Zbl

[2] B. N. Cooperstein, “Nearly maximal representations for the special linear group”, Michigan Math. J., 27:1 (1980), 3–19 | DOI | MR | Zbl

[3] J. A. Dieudonné and J. B. Carrell, “Invariant Theory, Old and New”, Adv. Math., 4:1 (1970), 1–80 | DOI | MR | Zbl

[4] S. Garibaldi and R. M. Guralnick, “Generic Stabilizers for Simple Algebraic Groups”, Michigan Math. J., 72 (2022) | DOI | MR | Zbl

[5] S. Garibaldi and R. M. Guralnick, “Simple groups stabilizing polynomials”, Forum Math. Pi, 3 (2015), e3, 41 pp. | DOI | MR | Zbl

[6] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Grundlehren der mathematischen Wissenschaften, 294, Springer, Berlin–Heidelberg, 1991 | DOI | MR | Zbl

[7] R. Lubkov and A. Stepanov, “Subgroups of Chevalley groups over rings”, J. Math. Sci., 252:6 (2021), 829–840 | DOI | MR | Zbl

[8] R. Lubkov, “The reverse decomposition of unipotents for bivectors”, Commun. Algebr., 49:10 (2021), 4546–4556 | DOI | MR | Zbl

[9] R. Lubkov, I. Nekrasov, “Overgroups of exterior powers of an elementary group. Levels”, Linear Multilinear Algebr., 72:4 (2022), 563–584 | DOI | MR

[10] R. Lubkov, I. Nekrasov, Overgroups of exterior powers of an elementary group. Normalizers, Doc. Math., 2024 (to appear) | MR | Zbl

[11] R. Lubkov, A. Stepanov, Subgroups of general linear groups, containing the exterior square of the elementary subgroup, to appear, 2024

[12] I. Mirković, D. Rumynin, “Centers of reduced enveloping algebras”, Math. Zeitschrift, 231:1 (1999), 123–132 | DOI | MR | Zbl

[13] G. M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Am. Math. Soc., 67, no. 365, 1987 | MR

[14] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Groups Lie Type their Geom., 207, Cambridge University Press, 1995, 233–280 | DOI | MR | Zbl

[15] W. C. Waterhouse, “Automorphisms of ${\rm det}(X_{ij})$: the group scheme approach”, Adv. Math., 65:2 (1987), 171–203 | DOI | MR | Zbl

[16] A. S. Ananevkii, N. A. Vavilov, S. S. Sinchuk, “O nadgruppakh $\mathrm{E}(m,R)\otimes \mathrm{E}(n,R)$. I. Urovni i normalizatory”, Algebra i analiz, 23:5 (2011), 55–98

[17] Z. I. Borevich, N. A. Vavilov, “Ob opredelenii setevoi podgruppy”, Zap. nauchn. sem. LOMI, 132, 1983, 26–33 | MR | Zbl

[18] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i analiz, 19:5 (2007), 37–64

[19] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm{E}_7$”, Algebra i analiz, 27:6 (2015), 57–88 | MR

[20] N. A. Vavilov, E. Ya. Perelman, “Polivektornye predstavleniya $\mathrm{GL}_n$”, Zap. nauchn. sem. POMI, 338, 2006, 69–97 | Zbl

[21] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauchn. sem. POMI, 272, 2000, 68–85 | MR | Zbl

[22] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR

[23] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR

[24] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. SamGU. Estestvennonauchn. ser., 2008, no. 3, 51–95 | Zbl

[25] R. A. Lubkov, “Obratnoe razlozhenie unipotentov v polivektornykh predstavleniyakh”, Zap. nauchn. sem. POMI, 513, 2022, 120–138 | MR

[26] R. A. Lubkov, I. I. Nekrasov, “Yavnye uravneniya na vneshnii kvadrat polnoi lineinoi gruppy”, Zap. nauchn. sem. POMI, 470, 2018, 120–137

[27] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. sem. POMI, 305, 2003, 195–225