Voir la notice du chapitre de livre
@article{ZNSL_2024_531_a5,
author = {R. A. Lubkov},
title = {Overgroups of elementary groups in polyvector representations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--116},
year = {2024},
volume = {531},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a5/}
}
R. A. Lubkov. Overgroups of elementary groups in polyvector representations. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 101-116. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a5/
[1] T. C. Burness and D. M. Testerman, “Irreducible Subgroups of Simple Algebraic Groups - A Survey”, Groups (St Andrews 2017 Birmingham), Cambridge University Press, 2019, 230–260 | MR | Zbl
[2] B. N. Cooperstein, “Nearly maximal representations for the special linear group”, Michigan Math. J., 27:1 (1980), 3–19 | DOI | MR | Zbl
[3] J. A. Dieudonné and J. B. Carrell, “Invariant Theory, Old and New”, Adv. Math., 4:1 (1970), 1–80 | DOI | MR | Zbl
[4] S. Garibaldi and R. M. Guralnick, “Generic Stabilizers for Simple Algebraic Groups”, Michigan Math. J., 72 (2022) | DOI | MR | Zbl
[5] S. Garibaldi and R. M. Guralnick, “Simple groups stabilizing polynomials”, Forum Math. Pi, 3 (2015), e3, 41 pp. | DOI | MR | Zbl
[6] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Grundlehren der mathematischen Wissenschaften, 294, Springer, Berlin–Heidelberg, 1991 | DOI | MR | Zbl
[7] R. Lubkov and A. Stepanov, “Subgroups of Chevalley groups over rings”, J. Math. Sci., 252:6 (2021), 829–840 | DOI | MR | Zbl
[8] R. Lubkov, “The reverse decomposition of unipotents for bivectors”, Commun. Algebr., 49:10 (2021), 4546–4556 | DOI | MR | Zbl
[9] R. Lubkov, I. Nekrasov, “Overgroups of exterior powers of an elementary group. Levels”, Linear Multilinear Algebr., 72:4 (2022), 563–584 | DOI | MR
[10] R. Lubkov, I. Nekrasov, Overgroups of exterior powers of an elementary group. Normalizers, Doc. Math., 2024 (to appear) | MR | Zbl
[11] R. Lubkov, A. Stepanov, Subgroups of general linear groups, containing the exterior square of the elementary subgroup, to appear, 2024
[12] I. Mirković, D. Rumynin, “Centers of reduced enveloping algebras”, Math. Zeitschrift, 231:1 (1999), 123–132 | DOI | MR | Zbl
[13] G. M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Am. Math. Soc., 67, no. 365, 1987 | MR
[14] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Groups Lie Type their Geom., 207, Cambridge University Press, 1995, 233–280 | DOI | MR | Zbl
[15] W. C. Waterhouse, “Automorphisms of ${\rm det}(X_{ij})$: the group scheme approach”, Adv. Math., 65:2 (1987), 171–203 | DOI | MR | Zbl
[16] A. S. Ananevkii, N. A. Vavilov, S. S. Sinchuk, “O nadgruppakh $\mathrm{E}(m,R)\otimes \mathrm{E}(n,R)$. I. Urovni i normalizatory”, Algebra i analiz, 23:5 (2011), 55–98
[17] Z. I. Borevich, N. A. Vavilov, “Ob opredelenii setevoi podgruppy”, Zap. nauchn. sem. LOMI, 132, 1983, 26–33 | MR | Zbl
[18] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i analiz, 19:5 (2007), 37–64
[19] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm{E}_7$”, Algebra i analiz, 27:6 (2015), 57–88 | MR
[20] N. A. Vavilov, E. Ya. Perelman, “Polivektornye predstavleniya $\mathrm{GL}_n$”, Zap. nauchn. sem. POMI, 338, 2006, 69–97 | Zbl
[21] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauchn. sem. POMI, 272, 2000, 68–85 | MR | Zbl
[22] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR
[23] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR
[24] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. SamGU. Estestvennonauchn. ser., 2008, no. 3, 51–95 | Zbl
[25] R. A. Lubkov, “Obratnoe razlozhenie unipotentov v polivektornykh predstavleniyakh”, Zap. nauchn. sem. POMI, 513, 2022, 120–138 | MR
[26] R. A. Lubkov, I. I. Nekrasov, “Yavnye uravneniya na vneshnii kvadrat polnoi lineinoi gruppy”, Zap. nauchn. sem. POMI, 470, 2018, 120–137
[27] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. sem. POMI, 305, 2003, 195–225