Actions of pro-groups and pro-rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 53-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notion of pro-groups, i.e. formal projective limits of groups, is quite useful in algebraic geometry, algebraic topology, and algebraic $\mathrm K$-theory. Such objects may be considered as pro-sets with a group structure, namely, the category of pro-groups is a full subcategory of the category of pro-sets. It is known that the category of pro-groups is semi-Abelian, i.e. it admits the notions of internal actions and semi-direct products. This paper is devoted to the natural problem of explicit description of pro-group actions on each other. It is proved that such actions are given by ordinary pro-set morphisms satisfying certain axioms as in the case of group actions by automorphisms. This result is also generalized to several categories of non-unital pro-rings. Finally, a counterexample is given showing that a similar description does not hold for Lie pro-algebras.
@article{ZNSL_2024_531_a3,
     author = {E. Yu. Voronetskii},
     title = {Actions of pro-groups and pro-rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--70},
     year = {2024},
     volume = {531},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a3/}
}
TY  - JOUR
AU  - E. Yu. Voronetskii
TI  - Actions of pro-groups and pro-rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 53
EP  - 70
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a3/
LA  - ru
ID  - ZNSL_2024_531_a3
ER  - 
%0 Journal Article
%A E. Yu. Voronetskii
%T Actions of pro-groups and pro-rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 53-70
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a3/
%G ru
%F ZNSL_2024_531_a3
E. Yu. Voronetskii. Actions of pro-groups and pro-rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 53-70. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a3/

[1] M. Artin, B. Mazur, Etale Homotopy, Springer-Verlag, 1969 | MR | Zbl

[2] F. Borceux, Handbook of Categorical Algebra, v. 2, Categories and Structures, Cambridge University Press, 1994 | MR

[3] F. Borceux, D. Bourn, Mal'cev, Protomodular, Homological and Semi-Abelian Categories, Kluwer Academic Publishers, 2004 | MR

[4] F. Borceux, G. Janelidze, G. M. Kelly, “Internal object actions”, Comment. Math. Univ. Carolin., 46:2 (2005), 235–255 | MR | Zbl

[5] J. Dydak, F. R. Ruiz del Portal, “Monomorphisms and epimorphisms in pro-categories”, Topology and Its Appl., 154 (2007), 2204–2222 | DOI | MR | Zbl

[6] P.-A. Jacqmin, Z. Janelidze, “On stability of exactness properties under the pro-completion”, Adv. Math., 377 (2021), 107484 | DOI | MR | Zbl

[7] M. Kashiwara, P. Schapira, Categories and Sheaves, Springer-Verlag, 2006 | MR | Zbl

[8] S. Mardešić, J. Segal, Shape Theory: the Inverse System Approach, North-Holland Publishing Company, 1982 | MR | Zbl

[9] E. Voronetsky, “Centrality of $\mathrm K_2$-functors revisited”, J. Pure Appl. Alg., 225:4 (2021), 106547 | DOI | MR | Zbl