Voir la notice du chapitre de livre
@article{ZNSL_2023_530_a2,
author = {B. Timofeenko and V. Efimova and A. Filchenkov},
title = {Vector graphics generation with {LLMs:} approaches and models},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {24--37},
year = {2023},
volume = {530},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a2/}
}
B. Timofeenko; V. Efimova; A. Filchenkov. Vector graphics generation with LLMs: approaches and models. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part II–2, Tome 530 (2023), pp. 24-37. http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a2/
[1] O. Akiyama, ASCII art synthesis with convolutional networks, 2017
[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Language models are few-shot learners, 2020
[3] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, DeepSVG: A hierarchical generative network for vector graphics animation, 2020
[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, Evaluating large language models trained on code, 2021 | Zbl
[5] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, Image-to-markup generation with coarse-to-fine attention, 2017
[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, 2019
[7] K. Frans, L. B. Soros, and O. Witkowski, ClipDraw: Exploring text-to-drawing synthesis through language-image encoders, 2021
[8] D. Ha and D. Eck, A neural representation of sketch drawings, 2017
[9] Tricking ChatGPT: Do anything now prompt injection, HungryMinded, (Accessed: 2023-03-03) https://medium.com/seeds-for-the-future/tricking-chatgpt-do-anything-now-prompt-injection-a0f65c307f6b
[10] A. Jain, A. Xie, and P. Abbeel, Vectorfusion: Text-to-svg by abstracting pixel-based diffusion models, 2022, arXiv: 2211.11319
[11] Reverse prompt engineering for fun and (no) profit, Latent Space, (Accessed: 2023-03-03) https://www.latent.space/p/reverse-prompt-eng
[12] T.-M. Li, M. Lukáč, G. Michaël, and J. Ragan-Kelley, “Differentiable vector graphics rasterization for editing and learning”, ACM Trans. Graph., 39:6, Proc. SIGGRAPH Asia (2020), 193:1–193:15
[13] X. Ma, Y. Zhou, X. Xu, B. Sun, V. Filev, N. Orlov, Y. Fu, and H. Shi, “Towards layer-wise image vectorization”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2022
[14] GPT-4 technical report, OpenAI, 2023
[15] Generating SVG images with ChatGPT, Praeclarum, (Accessed: 2023-04-04) https://praeclarum.org/2023/04/03/chatsvg.html
[16] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, Learning transferable visual models from natural language supervision, 2021 | Zbl
[17] D. Shiryaev, Drawing mona lisa with ChatGPT, (Accessed: 2023-04-04) https://neural.love/blog/chatgpt-svg
[18] The W3C SVG specification (version 1.1), (Accessed: 2023-01-01) http://www.w3.org/TR/SVG11/
[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, 2017 | Zbl
[20] S. Zhang, Z. Chen, Y. Shen, M. Ding, J. B. Tenenbaum, and C. Gan, “Planning with large language models for code generation”, The Eleventh International Conference on Learning Representations, 2023