Description of the evolution of finite-dimensional quantum systems by permutation groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 134-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider constructive approaches to quantum theory: quantum \break mechanics based on permutation representations of finite groups and the Weyl–Schwinger finite phase space quantum mechanics. We show that both approaches lead to the conclusion that, at a deep level, quantum evolution is based on permutations of finite sets.
@article{ZNSL_2023_528_a8,
     author = {V. V. Kornyak},
     title = {Description of the evolution of finite-dimensional quantum systems by permutation groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--152},
     year = {2023},
     volume = {528},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a8/}
}
TY  - JOUR
AU  - V. V. Kornyak
TI  - Description of the evolution of finite-dimensional quantum systems by permutation groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 134
EP  - 152
VL  - 528
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a8/
LA  - ru
ID  - ZNSL_2023_528_a8
ER  - 
%0 Journal Article
%A V. V. Kornyak
%T Description of the evolution of finite-dimensional quantum systems by permutation groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 134-152
%V 528
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a8/
%G ru
%F ZNSL_2023_528_a8
V. V. Kornyak. Description of the evolution of finite-dimensional quantum systems by permutation groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 134-152. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a8/

[1] V. V. Kornyak, “Quantum models based on finite groups”, J. Physics: Conference Series, 965 (2018), 012023

[2] V. V. Kornyak, “Modeling quantum behavior in the framework of permutation groups”, EPJ Web of Conferences, 173 (2018), 01007

[3] V. V. Kornyak, “Mathematical modeling of finite quantum systems”, Lect. Notes Comput. Sci., 7125, 2012, 79–93

[4] T. Banks, Finite deformations of quantum mechanics, 2020, arXiv: 2001.07662

[5] G. 't Hooft, The Cellular Automaton Interpretation of Quantum Mechanics, Springer International Publishing, 2016

[6] Morris Sidney A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Mathematical Society Lecture Note Series, Cambridge, 1977

[7] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, 1931

[8] J. Schwinger, “Unitary operator bases”, Proc. Natl. Acad. Sci. USA, 46:4 (1960), 570–579

[9] J. Schwinger, Quantum Kinematics and Dynamics, Benjamin, New York, 1970

[10] P. Horodecki, Ł. Rudnicki, K. Zyczkowski, “Five open problems in quantum information theory”, PRX Quantum, 3:1 (2022), 010101

[11] Th. Durt, B.-G. Englert, I. Bengtsson, K. Życzkowski, “On mutually unbiased bases”, International Journal of Quantum Information, 8:4 (2010), 535–640

[12] A. Vourdas, Finite and Profinite Quantum Systems, Springer, Berlin, 2017

[13] I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, 2006

[14] D. M. Appleby, H. Yadsan-Appleby, G. Zauner, “Galois automorphisms of a symmetric measurement”, Quantum Inf. Comput., 13 (2012), 672–720

[15] W. K. Wootters, B. D. Fields, “Optimal state-determination by mutually unbiased measurements”, Annals of Physics, 191:2 (1989), 363–381