To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 137-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of describing invariant extensions of the 3D Schrödinger operator $\mathbf{H}$ with a finite number of point interactions leads to the need for studying matrices of a special type, the permutation matrices. A large class of such extensions considered in a certain boundary triplet is in one-to-one correspondence with a set of the so-called boundary operators (matrices). The extension of the operator $\mathbf{H}$ with point interactions concentrated on $X = \{x_1, \ldots, x_m\}$ is invariant under the symmetry group of $X$ (or its subgroup) if and only if the corresponding boundary matrix commutes with the set of permutation matrices of size $m\times m$ induced by the symmetry group, i.e., belongs to the commutant of this set. The bicommutant theorem for such a set of matrices is proved for an arbitrary finite point set. For some special cases – a regular polygon, a tetrahedron, and a cube – the basis for the bicommutant regarded as a vector space is given explicitly.
@article{ZNSL_2023_527_a5,
     author = {V. V. Marchenko},
     title = {To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--154},
     year = {2023},
     volume = {527},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/}
}
TY  - JOUR
AU  - V. V. Marchenko
TI  - To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 137
EP  - 154
VL  - 527
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/
LA  - ru
ID  - ZNSL_2023_527_a5
ER  - 
%0 Journal Article
%A V. V. Marchenko
%T To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 137-154
%V 527
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/
%G ru
%F ZNSL_2023_527_a5
V. V. Marchenko. To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 137-154. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/

[1] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991

[2] G. Veil, Klassicheskie gruppy. Ikh invarianty i predstavleniya, Gos. izd. in. lit., M., 1947

[3] E. B. Vinberg, Kurs algebry, Faktorial-Press, M., 2001

[4] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004

[5] V. A. Derkach, M. M. Malamud, Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi, Kiev, 2017

[6] D. P. Zhelobenko, Osnovnye struktury i metody teorii predstavlenii, M., 2004

[7] M. M. Malamud, V. V. Marchenko, “Invariantnye operatory Shredingera s tochechnymi vzaimodeistviyami v vershinakh pravilnogo mnogogrannika”, Matem. zametki, 110:3 (2021), 471–477

[8] W. Arveson, An Invitation to $C^*$-Algebras, Springer-Verlag, New-York–Heidelberg–Berlin, 1976

[9] V. A. Derkach, M. M. Malamud, “Generalized resolvents and the boundary value problems for hermitian operators with gaps”, J. Funct. Anal., 95 (1991), 1–95

[10] V. A. Derkach, M. M. Malamud, “The extension theory of Hermitian operators and the moment problem”, J. Math. Sci. (New York), 73 (1995), 141–242

[11] N. Goloschapova, M. Malamud, V. Zastavnyi, “Radial positive definite functions and spectral theory of Schrödinger operators with point interactions”, Math. Nachr., 285 (2012)

[12] V. I. Gorbachuk, M. L. Gorbachuk, “Boundary value problems for operator differential equations”, Math. and its Appl., 48 (1991)

[13] R. A. Horn, Ch. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 2013