@article{ZNSL_2023_527_a5,
author = {V. V. Marchenko},
title = {To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--154},
year = {2023},
volume = {527},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/}
}
TY - JOUR
AU - V. V. Marchenko
TI - To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2023
SP - 137
EP - 154
VL - 527
UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/
LA - ru
ID - ZNSL_2023_527_a5
ER -
V. V. Marchenko. To the bicommutant theorem for algebras generated by symmetries of finite point sets in $\mathbb{R}^3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 137-154. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a5/
[1] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991
[2] G. Veil, Klassicheskie gruppy. Ikh invarianty i predstavleniya, Gos. izd. in. lit., M., 1947
[3] E. B. Vinberg, Kurs algebry, Faktorial-Press, M., 2001
[4] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004
[5] V. A. Derkach, M. M. Malamud, Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi, Kiev, 2017
[6] D. P. Zhelobenko, Osnovnye struktury i metody teorii predstavlenii, M., 2004
[7] M. M. Malamud, V. V. Marchenko, “Invariantnye operatory Shredingera s tochechnymi vzaimodeistviyami v vershinakh pravilnogo mnogogrannika”, Matem. zametki, 110:3 (2021), 471–477
[8] W. Arveson, An Invitation to $C^*$-Algebras, Springer-Verlag, New-York–Heidelberg–Berlin, 1976
[9] V. A. Derkach, M. M. Malamud, “Generalized resolvents and the boundary value problems for hermitian operators with gaps”, J. Funct. Anal., 95 (1991), 1–95
[10] V. A. Derkach, M. M. Malamud, “The extension theory of Hermitian operators and the moment problem”, J. Math. Sci. (New York), 73 (1995), 141–242
[11] N. Goloschapova, M. Malamud, V. Zastavnyi, “Radial positive definite functions and spectral theory of Schrödinger operators with point interactions”, Math. Nachr., 285 (2012)
[12] V. I. Gorbachuk, M. L. Gorbachuk, “Boundary value problems for operator differential equations”, Math. and its Appl., 48 (1991)
[13] R. A. Horn, Ch. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 2013