Paltanea type theorems on estimation by positive discrete functionals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 71-83

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is concerned with inequalities of the type \begin{equation*} |F(f)-F(e_0)f(x)| \le F(e_0)\omega_2(f, h), \end{equation*} there $F$ is a functional of the form $F(f)=\sum\limits_{y \in Y}\gamma(y)f(y)$, and $Y$ is an at most countable set with no accumulation points on $\mathbb{R}$, $\gamma : Y \to (0, \infty)$.
@article{ZNSL_2023_527_a2,
     author = {L. N. Ikhsanov},
     title = {Paltanea type theorems on estimation by positive discrete functionals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {527},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a2/}
}
TY  - JOUR
AU  - L. N. Ikhsanov
TI  - Paltanea type theorems on estimation by positive discrete functionals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 71
EP  - 83
VL  - 527
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a2/
LA  - ru
ID  - ZNSL_2023_527_a2
ER  - 
%0 Journal Article
%A L. N. Ikhsanov
%T Paltanea type theorems on estimation by positive discrete functionals
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 71-83
%V 527
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a2/
%G ru
%F ZNSL_2023_527_a2
L. N. Ikhsanov. Paltanea type theorems on estimation by positive discrete functionals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 71-83. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a2/