Paltanea type theorems on estimation by positive discrete functionals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 71-83
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is concerned with inequalities of the type \begin{equation*} |F(f)-F(e_0)f(x)| \le F(e_0)\omega_2(f, h), \end{equation*} there $F$ is a functional of the form $F(f)=\sum\limits_{y \in Y}\gamma(y)f(y)$, and $Y$ is an at most countable set with no accumulation points on $\mathbb{R}$, $\gamma : Y \to (0, \infty)$.
@article{ZNSL_2023_527_a2,
author = {L. N. Ikhsanov},
title = {Paltanea type theorems on estimation by positive discrete functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {71--83},
publisher = {mathdoc},
volume = {527},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a2/}
}
L. N. Ikhsanov. Paltanea type theorems on estimation by positive discrete functionals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 71-83. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a2/