On the mm-entropy of distributions of Gaussian processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 122-133

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wide class of Banach spaces with Gaussian measure, it is shown that their Shannon entropy (mm-entropy) is closely related to the entropy of the corresponding kernel's ball and behaves in a certain range in the same way as the logarithm of the measure of small balls. The obtained results generalize the recent results of A. M. Vershik and M. A. Lifshits.
@article{ZNSL_2023_525_a9,
     author = {A. A. Tadevosian},
     title = {On the mm-entropy of distributions of {Gaussian} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--133},
     publisher = {mathdoc},
     volume = {525},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a9/}
}
TY  - JOUR
AU  - A. A. Tadevosian
TI  - On the mm-entropy of distributions of Gaussian processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 122
EP  - 133
VL  - 525
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a9/
LA  - ru
ID  - ZNSL_2023_525_a9
ER  - 
%0 Journal Article
%A A. A. Tadevosian
%T On the mm-entropy of distributions of Gaussian processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 122-133
%V 525
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a9/
%G ru
%F ZNSL_2023_525_a9
A. A. Tadevosian. On the mm-entropy of distributions of Gaussian processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 122-133. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a9/