Moments of random integer partitions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 161-183
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the limiting behaviour of the $p$th moment, that is the sum of $p$th powers of parts in a partition of a positive integer $n$ which is taken uniformly among all partitions of $n$, as $n\to\infty$ and $p\in\mathbb{R}$ is fixed. We prove that after an appropriate centring and scaling, for $p\ge 1/2$ ($p\ne 1$) the limit distribution is Gaussian, while for $p<1/2$ the limit is some infinitely divisible distribution, depending on $p$, which we describe explicitly. In particular, for $p=0$ this is the Gumbel distribution, which is well known, and for $p=-1$ the limiting distribution is connected to the Jacobi theta function.
@article{ZNSL_2023_525_a12,
     author = {Yu. V. Yakubovich},
     title = {Moments of random integer partitions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {161--183},
     year = {2023},
     volume = {525},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a12/}
}
TY  - JOUR
AU  - Yu. V. Yakubovich
TI  - Moments of random integer partitions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 161
EP  - 183
VL  - 525
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a12/
LA  - ru
ID  - ZNSL_2023_525_a12
ER  - 
%0 Journal Article
%A Yu. V. Yakubovich
%T Moments of random integer partitions
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 161-183
%V 525
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a12/
%G ru
%F ZNSL_2023_525_a12
Yu. V. Yakubovich. Moments of random integer partitions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 161-183. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a12/

[1] C. D. Bastian, G. Rempala, H. Rabitz, The Jacobi theta distribution, 2021, arXiv: 2111.05336

[2] G. Ben Arous, L. V. Bogachev, S. A. Molchanov, “Limit theorems for sums of random exponentials”, Probab. Theory Relat. Fields, 132 (2005), 579–612

[3] L. Bogachev, “Limit laws for norms of IID samples with Weibull tails”, J. Theor. Probab., 19 (2006), 849–873

[4] P. Biane, J. Pitman, M. Yor, “Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions”, Bull. Amer. Math. Soc. (N.S.), 38:4 (2001), 435–465

[5] P. Erdős, J. Lehner, “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345

[6] B. Fristedt, “The structure of random partitions of large integers”, Trans. Amer. Math. Soc., 337:2 (1993), 703–735

[7] P. Flajolet, X. Gourdon, P. Dumas, “Mellin transforms and asymptotics: harmonic sums”, Theoret. Comput. Sci., 144:1–2 (1995), 3–58

[8] L. Holst, “Two conditional limit theorems with applications”, Ann. Statist., 7:3 (1979), 551–557

[9] A. Janßen, “Limit laws for power sums and norms of i.i.d. samples”, Probab. Theory Relat. Fields, 146 (2010), 515–533

[10] G. McKinley, M. Michelen, W. Perkins, “Maximum entropy and integer partitions”, Comb. Theory, 3:1 (2023), 7

[11] B. Pittel, “On a likely shape of the random Ferrers diagram”, Adv. Appl. Math., 18:4 (1997), 432–488

[12] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999

[13] M. Schlather, “Limit distributions of norms of vectors of positive i.i.d. random variables”, Ann. Probab., 29:2 (2001), 862–881

[14] A. M. Vershik, Y. V. Yakubovich, “The limit shape and fluctuations of random partitions of naturals with fixed number of summands”, Mosc. Math. J., 1:3 (2001), 457–468

[15] Y. Yakubovich, Growing integer partitions with uniform marginals and the equivalence of partition ensembles, 2023, arXiv: 2303.14472

[16] Dzh. Endryus, Teoriya razbienii, Nauka, M., 1982

[17] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39

[18] A. M. Vershik, “Predelnoe raspredelenie energii kvantovogo idealnogo gaza s tochki zreniya teorii razbienii naturalnykh chisel”, Uspekhi matem. nauk, 52:2(314) (1997), 139–146