Self-similarity and substitutions of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 83-120

Voir la notice de l'article provenant de la source Math-Net.Ru

Self-similar karyon partitions $\mathcal{T}(\mathbf{m},v)$ with parameters the weight vector $\mathbf{m}$ and the star $v$ are considered. The star $v$ defines the geometry of the parallelepipeds of which the tiling consists of and the weight vector $\mathbf{m}$ sets local rules and periodicity of $\mathcal{T}(\mathbf{m},v)$. A deflation $\bigtriangleup:\mathcal{T}(\mathbf{m},v) \longrightarrow \mathcal{T}^{\bigtriangleup}(\mathbf{m},v)$ is being built, where $\mathcal{T}^{\bigtriangleup}(\mathbf{m},v)=A\mathcal{T}(\mathbf{m},v)$, and $A$ is an affine mapping of the space $\mathbb{R}^{d}$. Deflation replaces the basic polyhedra forming the tiling $\mathcal{T}(\mathbf{m},v)$ by smaller polyhedra. This is the main idea of multidimensional approximations by continued fractions.
@article{ZNSL_2023_523_a5,
     author = {V. G. Zhuravlev},
     title = {Self-similarity and substitutions of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--120},
     publisher = {mathdoc},
     volume = {523},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a5/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Self-similarity and substitutions of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 83
EP  - 120
VL  - 523
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a5/
LA  - ru
ID  - ZNSL_2023_523_a5
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Self-similarity and substitutions of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 83-120
%V 523
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a5/
%G ru
%F ZNSL_2023_523_a5
V. G. Zhuravlev. Self-similarity and substitutions of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 83-120. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a5/