Extraction of small rank unipotent elements in $\mathrm{SO}(2\ell,K)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 101-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper continues the series of papers of N.A. Vavilov and the author devoted to the geometry of microweight tori in extended Chevalley groups. It is proved that the subgroup, generated by a pair of microweight tori of type $\bar\omega_1$ in a Chevalley group of type $\mathrm{D}_\ell$, contains unipotent elements of rank less than or equal to 4 provided that the field has at least 19 elements. These unipotent elements are either a root unipotent element or the product of two root unipotent elements corresponding to orthogonal roots.
@article{ZNSL_2023_522_a5,
     author = {V. V. Nesterov},
     title = {Extraction of small rank unipotent elements in $\mathrm{SO}(2\ell,K)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--112},
     year = {2023},
     volume = {522},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a5/}
}
TY  - JOUR
AU  - V. V. Nesterov
TI  - Extraction of small rank unipotent elements in $\mathrm{SO}(2\ell,K)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 101
EP  - 112
VL  - 522
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a5/
LA  - ru
ID  - ZNSL_2023_522_a5
ER  - 
%0 Journal Article
%A V. V. Nesterov
%T Extraction of small rank unipotent elements in $\mathrm{SO}(2\ell,K)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 101-112
%V 522
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a5/
%G ru
%F ZNSL_2023_522_a5
V. V. Nesterov. Extraction of small rank unipotent elements in $\mathrm{SO}(2\ell,K)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 101-112. http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a5/

[1] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 64, 1976, 12–29 | Zbl

[2] Z. I. Borevich, N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Tr. Mat. in-ta AN SSSR, 148, 1978, 43–57 | Zbl

[3] B. N. Burbaki, Elementy matematiki. Gruppy i algebry Li. gl. IV – VI, Mir, M., 1972 | MR

[4] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Trudy Leningr. Mat. Obsch., 1, 1990, 64–109

[5] N. A. Vavilov, “Geometriya $1$-torov v $\mathrm{GL}_n$”, Algebra i analiz, 19:3 (2007), 120–151

[6] N. A. Vavilov, “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85

[7] N. A. Vavilov, V. V. Nesterov, “Geometriya mikrovesovykh torov”, Vladikavkazskii mat. zhurnal, 10:1 (2008), 10–23 | MR | Zbl

[8] N. A. Vavilov, V. V. Nesterov, “Podgruppy, porozhdennye paroi 2-torov v $\mathrm{GL}(5,K)$”, Zap. nauchn. semin. POMI, 521 (2023)

[9] V. V. Nesterov, “Izvlechenie malorangovykh unipotentnykh elementov v $\mathrm{GL}(4,K)$”, Zap. nauchn. semin. POMI, 492 (2020), 134–148

[10] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975

[11] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, Sohn Wiley, London, 1972 | MR

[12] V. V. Nesterov, N. A. Vavilov, “Pairs of microweight tori in $\mathrm{GL}_n$”, Chebyshevskii sbornik, 21:3 (2020), 257–266 | MR