@article{ZNSL_2023_521_a2,
author = {M. I. Belishev and S. A. Simonov},
title = {A functional model of a class of symmetric semi-bounded operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--53},
year = {2023},
volume = {521},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a2/}
}
M. I. Belishev; S. A. Simonov. A functional model of a class of symmetric semi-bounded operators. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 33-53. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a2/
[1] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, 1966 | MR
[2] M. I. Belishev, “Granichnoe upravlenie i obratnye zadachi: odnomernyi variant BC-metoda”, Zap. nauchn. semin. POMI, 354, 2008, 19–80 | Zbl
[3] M. I. Belishev, M. N. Demchenko, “Dinamicheskaya sistema s granichnym upravleniem, svyazannaya s simmetricheskim poluogranichennym operatorom”, Zap. nauchn. semin. POMI, 409, 2012, 17–39
[4] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma–Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33
[5] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskikh prostranstv”, Funkts. analiz i ego pril., 53:2 (2019), 3–10 | DOI | MR | Zbl
[6] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskogo prostranstva s meroi i ee prilozhenie”, Mat. sbornik, 211:4 (2020), 44–62 | DOI | MR | Zbl
[7] M. I. Belishev, S. A. Simonov, “Ob evolyutsionnoi dinamicheskoi sisteme pervogo poryadka s granichnym upravleniem”, Zap. nauchn. semin. POMI, 483, 2019, 41–54
[8] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Tr. MIAN SSSR, 115, 1971, 28–38
[9] G. Birkgof, Teoriya reshetok, Nauka, 1984
[10] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, 2010
[11] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. MMO, 1, 1952, 187–246 | Zbl
[12] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, 1967
[13] V. A. Derkach, M. M. Malamud, “Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi”, Trudy instituta matematiki NAN Ukrainy, 104 (2017)
[14] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, 1972 | MR
[15] V. B. Korotkov, Integralnye operatory, Nauka, 1983 | MR
[16] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl
[17] M. I. Belishev, Wave propagation in abstract dynamical system with boundary control, 2023, arXiv: 2307.00605v1 | MR | Zbl
[18] M. I. Belishev, V. S. Mikhailov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl
[19] M. I. Belishev, S. A. Simonov, “A canonical model of the one-dimensional dynamical Dirac system with boundary control”, Evolution Equations and Control Theory, 11:1 (2022), 283–300 | DOI | MR | Zbl
[20] A. S. Blagovestchenskii, Inverse Problems of Wave Processes, VSP, Netherlands, 2001
[21] P. Hartman, “Differential equations with non-oscillatory eigenfunctions”, Duke Math. J., 15 (1948), 697–709 | MR