A functional model of a class of symmetric semi-bounded operators
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 33-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $L_0$ be a closed symmetric positive definite operator with nonzero defect indices $n_\pm(L_0)$ in a separable Hilbert space ${\mathscr H}$. It determines a family of dynamical systems $\alpha^T$, $T>0$, of the form \begin{align*} & u''(t)+L_0^*u(t) = 0 && {\rm in } {{\mathscr H}}, 0<t<T,\\ & u(0)=u'(0)=0 && {\rm in } {{\mathscr H}},\\ & \Gamma_1 u(t) = f(t), &&0\leqslant t \leqslant T, \end{align*} where $\{{\mathscr H};\Gamma_1,\Gamma_2\}$ ($\Gamma_{1,2}:{\mathscr H}\to{\rm Ker } L_0^*$) is the canonical (Vishik) boundary triple for $L_0$, $f$ is a boundary control (${\rm Ker } L_0^*$-valued function of $t$) and $u=u^f(t)$ is the solution (trajectory). Let $L_0$ be completely non-self-adjoint and $n_\pm(L_0)=1$, so that $f(t)=\phi(t)e$ with a scalar function $\phi\in {L_2(0,T)}$ and $e\in{\rm Ker } L_0^*$. Let the map $W^T: \phi\mapsto u^f(T)$ be such that $C^T=(W^T)^*W^T=\mathbb I+K^T$ with an integral operator $K^T$ in ${L_2(0,T)}$ which has a smooth kernel. Assume that $C^T$ an isomorphism in ${L_2(0,T)}$ for all $T>0$. We show that under these assumptions the operator $L_0$ is unitarily equivalent to the minimal Schrödinger operator $S_0=-D^2+q$ in ${L_2(0,\infty)}$ with a smooth real-valued potential $q$, which is in the limit point case at infinity. It is also proved that $S_0$ provides a canonical wave model of $L_0$.
@article{ZNSL_2023_521_a2,
     author = {M. I. Belishev and S. A. Simonov},
     title = {A functional model of a class of symmetric semi-bounded operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--53},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Simonov
TI  - A functional model of a class of symmetric semi-bounded operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 33
EP  - 53
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a2/
LA  - ru
ID  - ZNSL_2023_521_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Simonov
%T A functional model of a class of symmetric semi-bounded operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 33-53
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a2/
%G ru
%F ZNSL_2023_521_a2
M. I. Belishev; S. A. Simonov. A functional model of a class of symmetric semi-bounded operators. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 33-53. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a2/

[1] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, 1966 | MR

[2] M. I. Belishev, “Granichnoe upravlenie i obratnye zadachi: odnomernyi variant BC-metoda”, Zap. nauchn. semin. POMI, 354, 2008, 19–80 | Zbl

[3] M. I. Belishev, M. N. Demchenko, “Dinamicheskaya sistema s granichnym upravleniem, svyazannaya s simmetricheskim poluogranichennym operatorom”, Zap. nauchn. semin. POMI, 409, 2012, 17–39

[4] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma–Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33

[5] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskikh prostranstv”, Funkts. analiz i ego pril., 53:2 (2019), 3–10 | DOI | MR | Zbl

[6] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskogo prostranstva s meroi i ee prilozhenie”, Mat. sbornik, 211:4 (2020), 44–62 | DOI | MR | Zbl

[7] M. I. Belishev, S. A. Simonov, “Ob evolyutsionnoi dinamicheskoi sisteme pervogo poryadka s granichnym upravleniem”, Zap. nauchn. semin. POMI, 483, 2019, 41–54

[8] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Tr. MIAN SSSR, 115, 1971, 28–38

[9] G. Birkgof, Teoriya reshetok, Nauka, 1984

[10] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, 2010

[11] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. MMO, 1, 1952, 187–246 | Zbl

[12] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, 1967

[13] V. A. Derkach, M. M. Malamud, “Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi”, Trudy instituta matematiki NAN Ukrainy, 104 (2017)

[14] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, 1972 | MR

[15] V. B. Korotkov, Integralnye operatory, Nauka, 1983 | MR

[16] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl

[17] M. I. Belishev, Wave propagation in abstract dynamical system with boundary control, 2023, arXiv: 2307.00605v1 | MR | Zbl

[18] M. I. Belishev, V. S. Mikhailov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl

[19] M. I. Belishev, S. A. Simonov, “A canonical model of the one-dimensional dynamical Dirac system with boundary control”, Evolution Equations and Control Theory, 11:1 (2022), 283–300 | DOI | MR | Zbl

[20] A. S. Blagovestchenskii, Inverse Problems of Wave Processes, VSP, Netherlands, 2001

[21] P. Hartman, “Differential equations with non-oscillatory eigenfunctions”, Duke Math. J., 15 (1948), 697–709 | MR