A posteriori error identities for parabolic convection–diffusion problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 205-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we derive and discuss integral identities that hold for the difference between the exact solution of initial-boundary value problems generated by the reaction–convection–diffusion equation and any arbitrary function from admissible (energy) class. One side of the identity forms a natural measure of the distance between the exact solution and its approximation, while the other one is either directly computable or natural measure serves as a source of fully computable error bounds. A posteriori error identities and error estimates are derived in the most general form without using special features of a function compared with the exact solution. Therefore, they are valid for a wide spectrum of approximations constructed different numerical methods and can be also used for the evaluation of modelling errors.
@article{ZNSL_2022_519_a8,
     author = {S. Repin},
     title = {A posteriori error identities for parabolic convection{\textendash}diffusion problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--228},
     year = {2022},
     volume = {519},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a8/}
}
TY  - JOUR
AU  - S. Repin
TI  - A posteriori error identities for parabolic convection–diffusion problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 205
EP  - 228
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a8/
LA  - en
ID  - ZNSL_2022_519_a8
ER  - 
%0 Journal Article
%A S. Repin
%T A posteriori error identities for parabolic convection–diffusion problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 205-228
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a8/
%G en
%F ZNSL_2022_519_a8
S. Repin. A posteriori error identities for parabolic convection–diffusion problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 205-228. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a8/

[1] P. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987 | MR

[2] V. N. Denisov, “On the behavior of solutions of parabolic equations for large value of time”, Russ. Math. Surv., 60:4 (2005), 721–790 | DOI | MR

[3] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964 | MR

[4] K. Kumar, S. Kyas, J. Nordbotten, S. Repin, “Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem”, Comput. Math. Appl., 91 (2021), 122–149 | DOI | MR

[5] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 | MR

[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer, New York, 1985 | MR

[7] U. Langer, S. Matculevich, and S. Repin, “Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems”, Comput. Math. Appl., 78:8 (2019), 2641–2671 | DOI | MR

[8] S. Matculevich and S. Repin, “Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation”, Appl. Math. Comput., 247 (2014), 329–347 | MR

[9] S. Matculevich and S. Repin, “Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincare inequalities for traces of functions on the boundary”, Differ. Equ., 52:10 (2016), 1355–1365 | DOI | MR

[10] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Taylor, New York, 1996 | MR

[11] A. Quarteroni and A. Vali, “Domain decomposition methods for partial differential equations”, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999 | MR

[12] L. E. Payne and H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | MR

[13] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500 | DOI | MR

[14] S. Repin, “Two–sided estimates of deviations from exact solutions of uniformly elliptic equations”, Trudi St.-Petersburg Mathematical Society, 9 (2001), 148–179 | MR

[15] S. Repin, “Estimates of deviations from exact solutions initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR

[16] S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter GmbH Co. KG, Berlin, 2008 | MR

[17] S. Repin, “Error identities for parabolic initial boundary value problems”, Zapiski POMI, 508, 2021, 147–172 | MR

[18] S. Repin, “Identity for deviations from the exact solutions of the problem $\Lambda^*A\Lambda u +\ell = 0$ and its consequences”, Computational Mathematics and Mathematical Physics, 61:12 (2021), 1986–2009 | DOI | MR

[19] S. Repin, S. Sauter, “Functional A Posteriori Estimates for the Reaction-Diffusion Problem”, C. R. Acad. Sci. Paris, Ser. 1, 343 (2006), 349–354 | DOI | MR

[20] S. Repin and S. Sauter, Accuracy of Mathematical Models. Dimension Reduction, Homogenization, and Simplification, EMS Tracts Math., 33, European Mathematical Society (EMS), Berlin, 2020 | MR

[21] V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 2006 | MR

[22] A. Toselli and O. Widlund, Domain decomposition methods–algorithms and theory, Springer Series in Computational Mathematics, 34, Springer, Berlin, 2005 | DOI | MR