The complementarity principle and complementary observables in constructive quantum mechanics
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 82-105

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical formulation of Bohr's complementarity principle \break leads to the concepts of mutually unbiased bases in Hilbert spaces and complementary quantum observables. We consider the algebraic structures associated with these concepts and their applications to constructive quantum mechanics. Computer-algebraic approaches to the problems under consideration are briefly discussed.
@article{ZNSL_2022_517_a5,
     author = {V. V. Kornyak},
     title = {The complementarity principle and complementary observables in constructive quantum mechanics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--105},
     publisher = {mathdoc},
     volume = {517},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/}
}
TY  - JOUR
AU  - V. V. Kornyak
TI  - The complementarity principle and complementary observables in constructive quantum mechanics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 82
EP  - 105
VL  - 517
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/
LA  - ru
ID  - ZNSL_2022_517_a5
ER  - 
%0 Journal Article
%A V. V. Kornyak
%T The complementarity principle and complementary observables in constructive quantum mechanics
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 82-105
%V 517
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/
%G ru
%F ZNSL_2022_517_a5
V. V. Kornyak. The complementarity principle and complementary observables in constructive quantum mechanics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/