@article{ZNSL_2022_517_a5,
author = {V. V. Kornyak},
title = {The complementarity principle and complementary observables in constructive quantum mechanics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--105},
year = {2022},
volume = {517},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/}
}
V. V. Kornyak. The complementarity principle and complementary observables in constructive quantum mechanics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/
[1] H. H. Pattee, “The complementarity principle in biological and social structures”, J. Soc. Biolog. Structures, 1:2 (1978), 191–200 | DOI
[2] J. Schwinger, “Unitary operator bases”, Proc. Natl. Acad, Sci, USA, 46:4 (1960), 570–579 | DOI | MR
[3] W. K. Wootters, B. D. Fields, “Optimal state-determination by mutually unbiased measurements”, Annals Physics, 191:2 (1989), 363–381 | DOI | MR
[4] V. V. Kornyak, “Quantum models based on finite groups”, J. Phys.: Conference Series, 965 (2018), 012023 | DOI
[5] V. V. Kornyak, “Modeling quantum behavior in the framework of permutation groups”, EPJ Web of Conferences, 173 (2018), 01007 | DOI
[6] V. V. Kornyak, “Mathematical modeling of finite quantum systems”, Lect. Notes Comput. Sci., 7125, 2012, 79–93 | DOI
[7] G. 't Hooft, The Cellular Automaton Interpretation of Quantum Mechanics, Fundamental Theories of Physics, Springer International Publishing, 2016 | DOI | MR
[8] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986
[9] T. Durt, B.-G. Englert, I. Bengtsson, K. Życzkowski, “On mutually unbiased bases”, Intern. J. Quantum Inform., 8:4 (2010), 535–640 | DOI
[10] G. M. D'Ariano, M. G. A. Paris, M. F. Sacchi, “Quantum tomography”, Adv. Imag. Elect. Phys., 128 (2003), 206–309
[11] I. D. Ivanovic, “Geometrical description of quantal state determination”, J. Phys. A: Math. General, 14:12 (1981), 3241–3245 | DOI | MR
[12] B.-G. Englert, Ya. Aharonov, “The mean king's problem: prime degrees of freedom”, Phys. Letters A, 284:1 (2001), 1–5 | DOI | MR
[13] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, F. Vatan, “A new proof for the existence of mutually unbiased bases”, Algorithmica, 34:4 (2002), 512–528 | DOI | MR
[14] W. Bruzda, W. Tadej, K. Życzkowski, Catalogue of Complex Hadamard Matrices, , 24.09.2022 https://chaos.if.uj.edu.pl/k̃arol/hadamard/index.html | MR
[15] R. Jagannathan, “On generalized Clifford algebras and their physical applications”, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, 2010, 465–489 | DOI | MR
[16] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR
[17] K. Morinaga, T. Nōno, “On the Linearization of a Form of Higher Degree and its Representation”, J. Sci. Hiroshima University, Ser. A (Mathematics, Physics, Chemistry), 16 (1952), 13–41 | MR
[18] T. Banks, Finite deformations of quantum mechanics, 2020, arXiv: 2001.07662 [hep-th]
[19] V. V. Kornyak, “Quantum mereology in finite quantum mechanics”, Discrete and Continuous Models and Applied Computational Science, 29:4 (2021), 347–360 | DOI
[20] V. V. Kornyak, “Subsystems of a closed quantum system in finite quantum mechanics”, J. Math. Sci., 261 (2022), 717–729 | DOI | MR
[21] V. V. Kornyak, “Decomposition of a finite quantum system into subsystems: symbolic–numerical approach”, Programming and Computer Software, 48 (2022), 293–300 | DOI | MR
[22] S. Brierley, S. Weigert, I. Bengtsson, “All mutually unbiased bases in dimensions two to five”, Quantum Inf. Comput., 10 (2010), 803–820 | MR
[23] S. Brierley, S. Weigert, Constructing mutually unbiased bases in dimension six, Phys. Rev. A, 79:5 (2009), 052316 | DOI | MR
[24] M. P. Colomer, L. Mortimer, I. Frérot, M. Farkas, A. Acín, Three numerical approaches to find mutually unbiased bases using Bell inequalities, 2022, arXiv: 2203.09429
[25] A. Klappenecker, M. Rötteler, “Constructions of mutually unbiased bases”, International Conference on Finite Fields and Applications, Springer, 2003, 137–144 | MR