The complementarity principle and complementary observables in constructive quantum mechanics
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 82-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The mathematical formulation of Bohr's complementarity principle \break leads to the concepts of mutually unbiased bases in Hilbert spaces and complementary quantum observables. We consider the algebraic structures associated with these concepts and their applications to constructive quantum mechanics. Computer-algebraic approaches to the problems under consideration are briefly discussed.
@article{ZNSL_2022_517_a5,
     author = {V. V. Kornyak},
     title = {The complementarity principle and complementary observables in constructive quantum mechanics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--105},
     year = {2022},
     volume = {517},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/}
}
TY  - JOUR
AU  - V. V. Kornyak
TI  - The complementarity principle and complementary observables in constructive quantum mechanics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 82
EP  - 105
VL  - 517
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/
LA  - ru
ID  - ZNSL_2022_517_a5
ER  - 
%0 Journal Article
%A V. V. Kornyak
%T The complementarity principle and complementary observables in constructive quantum mechanics
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 82-105
%V 517
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/
%G ru
%F ZNSL_2022_517_a5
V. V. Kornyak. The complementarity principle and complementary observables in constructive quantum mechanics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Tome 517 (2022), pp. 82-105. http://geodesic.mathdoc.fr/item/ZNSL_2022_517_a5/

[1] H. H. Pattee, “The complementarity principle in biological and social structures”, J. Soc. Biolog. Structures, 1:2 (1978), 191–200 | DOI

[2] J. Schwinger, “Unitary operator bases”, Proc. Natl. Acad, Sci, USA, 46:4 (1960), 570–579 | DOI | MR

[3] W. K. Wootters, B. D. Fields, “Optimal state-determination by mutually unbiased measurements”, Annals Physics, 191:2 (1989), 363–381 | DOI | MR

[4] V. V. Kornyak, “Quantum models based on finite groups”, J. Phys.: Conference Series, 965 (2018), 012023 | DOI

[5] V. V. Kornyak, “Modeling quantum behavior in the framework of permutation groups”, EPJ Web of Conferences, 173 (2018), 01007 | DOI

[6] V. V. Kornyak, “Mathematical modeling of finite quantum systems”, Lect. Notes Comput. Sci., 7125, 2012, 79–93 | DOI

[7] G. 't Hooft, The Cellular Automaton Interpretation of Quantum Mechanics, Fundamental Theories of Physics, Springer International Publishing, 2016 | DOI | MR

[8] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986

[9] T. Durt, B.-G. Englert, I. Bengtsson, K. Życzkowski, “On mutually unbiased bases”, Intern. J. Quantum Inform., 8:4 (2010), 535–640 | DOI

[10] G. M. D'Ariano, M. G. A. Paris, M. F. Sacchi, “Quantum tomography”, Adv. Imag. Elect. Phys., 128 (2003), 206–309

[11] I. D. Ivanovic, “Geometrical description of quantal state determination”, J. Phys. A: Math. General, 14:12 (1981), 3241–3245 | DOI | MR

[12] B.-G. Englert, Ya. Aharonov, “The mean king's problem: prime degrees of freedom”, Phys. Letters A, 284:1 (2001), 1–5 | DOI | MR

[13] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, F. Vatan, “A new proof for the existence of mutually unbiased bases”, Algorithmica, 34:4 (2002), 512–528 | DOI | MR

[14] W. Bruzda, W. Tadej, K. Życzkowski, Catalogue of Complex Hadamard Matrices, , 24.09.2022 https://chaos.if.uj.edu.pl/k̃arol/hadamard/index.html | MR

[15] R. Jagannathan, “On generalized Clifford algebras and their physical applications”, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, 2010, 465–489 | DOI | MR

[16] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR

[17] K. Morinaga, T. Nōno, “On the Linearization of a Form of Higher Degree and its Representation”, J. Sci. Hiroshima University, Ser. A (Mathematics, Physics, Chemistry), 16 (1952), 13–41 | MR

[18] T. Banks, Finite deformations of quantum mechanics, 2020, arXiv: 2001.07662 [hep-th]

[19] V. V. Kornyak, “Quantum mereology in finite quantum mechanics”, Discrete and Continuous Models and Applied Computational Science, 29:4 (2021), 347–360 | DOI

[20] V. V. Kornyak, “Subsystems of a closed quantum system in finite quantum mechanics”, J. Math. Sci., 261 (2022), 717–729 | DOI | MR

[21] V. V. Kornyak, “Decomposition of a finite quantum system into subsystems: symbolic–numerical approach”, Programming and Computer Software, 48 (2022), 293–300 | DOI | MR

[22] S. Brierley, S. Weigert, I. Bengtsson, “All mutually unbiased bases in dimensions two to five”, Quantum Inf. Comput., 10 (2010), 803–820 | MR

[23] S. Brierley, S. Weigert, Constructing mutually unbiased bases in dimension six, Phys. Rev. A, 79:5 (2009), 052316 | DOI | MR

[24] M. P. Colomer, L. Mortimer, I. Frérot, M. Farkas, A. Acín, Three numerical approaches to find mutually unbiased bases using Bell inequalities, 2022, arXiv: 2203.09429

[25] A. Klappenecker, M. Rötteler, “Constructions of mutually unbiased bases”, International Conference on Finite Fields and Applications, Springer, 2003, 137–144 | MR