On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 55-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $I_{p,q} = I_p \oplus -I_q$. Pseudounitary eigenvalues of a positive definite matrix $A$ are the moduli of the conventional eigenvalues of the matrix $I_{p,q}A$. They are invariants of pseudounitary *-congruences performed with $A$. For a fixed $n = p + q$, the sum of the squares $\sigma_{p,q}$ of these numbers is a function of the parameter $p$. In general, its values for different $p$ can vary very significantly. However, if $A$ is the tridiagonal Toeplitz matrix with the entry $a \ge 2$ on the main diagonal and the entry $-1$ on the two neighboring diagonals, then $\sigma_{p,q}$ has a constant value for all $p$. This nontrivial fact is explained in the paper.
@article{ZNSL_2022_514_a2,
     author = {Kh. D. Ikramov},
     title = {On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--60},
     publisher = {mathdoc},
     volume = {514},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 55
EP  - 60
VL  - 514
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a2/
LA  - ru
ID  - ZNSL_2022_514_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 55-60
%V 514
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a2/
%G ru
%F ZNSL_2022_514_a2
Kh. D. Ikramov. On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXV, Tome 514 (2022), pp. 55-60. http://geodesic.mathdoc.fr/item/ZNSL_2022_514_a2/