Description of weak-type BMO-regularity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 173-190

Voir la notice de l'article provenant de la source Math-Net.Ru

The weak-type BMO-regularity property for couples of quasi-Banach lattices of measurable functions was recently introduced as a suitable substitute for the usual BMO-regularity in connection with characterization of the $K$-closedness of Hardy-type spaces on the unit circle and stability for the real interpolation. It was characterized in terms of the BMO-regularity of couples $\left((X, Y)_{\alpha, p}, (X, Y)_{\beta, q}\right)$, $0 \alpha \beta 1$, of the real interpolation spaces. In the present note, a natural characterization of this property similar to that of BMO-regularity for couples of Banach lattices $(X, Y)$ in terms of the BMO-regularity of $X' Y$ is extended to couples of lattices of measurable functions on homogeneous type spaces. We also derive equivalent conditions corresponding to the limit case where $\alpha = 0$.
@article{ZNSL_2022_512_a9,
     author = {D. V. Rutsky},
     title = {Description of weak-type {BMO-regularity}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--190},
     publisher = {mathdoc},
     volume = {512},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a9/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Description of weak-type BMO-regularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 173
EP  - 190
VL  - 512
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a9/
LA  - ru
ID  - ZNSL_2022_512_a9
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Description of weak-type BMO-regularity
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 173-190
%V 512
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a9/
%G ru
%F ZNSL_2022_512_a9
D. V. Rutsky. Description of weak-type BMO-regularity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 173-190. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a9/