Symmetries of the universal karyon tilings
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 100-136
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Universal karyon tilings $\mathcal{T}(v,\mu, \rho)$ are generated by the parallelepipeds $T_{0}, T_{1}, \ldots, T_{d}$ dividing the real space $\mathbb{R}^{d}$. The tilings $\mathcal{T}(v,\mu, \rho)$ are parameterized by triples $(v, \mu, \rho)$ running through the infinite cylinder $\triangle \times \triangle \times \mathbb{R}$ with the base $\triangle \times \triangle$ that is the direct product of two simplices $\triangle$ of dimension $d$. The parameter $v$ defines the geometry of the parallelepipeds $T_{k}$ and the two others $\mu, \rho$ define the symmetry of the karyon tiling \break $\mathcal{T}(v,\mu, \rho)$. We consider the usual and generalized symmetries of tilings $\mathcal{T}(v,\mu, 0)$. The generalized symmetries are quasi-symmetries that map the tilings $\mathcal{T}(v,\mu, 0)$ to their dual tilings $\mathcal{T}^{*}(v,\mu, 0)$.
			
            
            
            
          
        
      @article{ZNSL_2022_511_a3,
     author = {V. G. Zhuravlev},
     title = {Symmetries of the universal karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--136},
     publisher = {mathdoc},
     volume = {511},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/}
}
                      
                      
                    V. G. Zhuravlev. Symmetries of the universal karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 100-136. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/
