Symmetries of the universal karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 100-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Universal karyon tilings $\mathcal{T}(v,\mu, \rho)$ are generated by the parallelepipeds $T_{0}, T_{1}, \ldots, T_{d}$ dividing the real space $\mathbb{R}^{d}$. The tilings $\mathcal{T}(v,\mu, \rho)$ are parameterized by triples $(v, \mu, \rho)$ running through the infinite cylinder $\triangle \times \triangle \times \mathbb{R}$ with the base $\triangle \times \triangle$ that is the direct product of two simplices $\triangle$ of dimension $d$. The parameter $v$ defines the geometry of the parallelepipeds $T_{k}$ and the two others $\mu, \rho$ define the symmetry of the karyon tiling \break $\mathcal{T}(v,\mu, \rho)$. We consider the usual and generalized symmetries of tilings $\mathcal{T}(v,\mu, 0)$. The generalized symmetries are quasi-symmetries that map the tilings $\mathcal{T}(v,\mu, 0)$ to their dual tilings $\mathcal{T}^{*}(v,\mu, 0)$.
@article{ZNSL_2022_511_a3,
     author = {V. G. Zhuravlev},
     title = {Symmetries of the universal karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--136},
     year = {2022},
     volume = {511},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Symmetries of the universal karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 100
EP  - 136
VL  - 511
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/
LA  - ru
ID  - ZNSL_2022_511_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Symmetries of the universal karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 100-136
%V 511
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/
%G ru
%F ZNSL_2022_511_a3
V. G. Zhuravlev. Symmetries of the universal karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 100-136. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/

[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | MR

[2] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR

[3] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauchn. semin. POMI, 322, 2005, 83–106

[4] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92

[5] V. G. Zhuravlev, “Universalnye yadernye razbieniya”, Zap. nauchn. semin. POMI, 490, 2020, 49–93

[6] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauchn. semin. POMI, 479, 2019, 85–120

[7] P. Arnoux, V. Berthé, S. Ito, “Discrete planes, $\mathbb{Z}^2$-actions, Jacobi-Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 305–349 | DOI | MR

[8] V. Berthé, L. Vuillon, “Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences”, Discrete Math., 223 (2000), 27–53 | DOI | MR

[9] V. Berthé, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals and tilings”, Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 248–323 | MR

[10] S. Ito, M. Ohtsuki, “Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | MR

[11] S. Ito, M. Ohtsuki, “Parallelogram tilings and Jacobi-Perron algorithm”, Tokyo J. Math., 17:1 (1994), 33–58 | DOI | MR

[12] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210

[13] A. V. Shutov, A. V. Maleev, “Quasiperiodic plane tilings based on stepped surfaces”, Acta Crystallogr., A64 (2008), 376–382 | DOI | MR

[14] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR

[15] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102

[16] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019

[17] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145

[18] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR

[19] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR