@article{ZNSL_2022_511_a3,
author = {V. G. Zhuravlev},
title = {Symmetries of the universal karyon tilings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--136},
year = {2022},
volume = {511},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/}
}
V. G. Zhuravlev. Symmetries of the universal karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 100-136. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a3/
[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | MR
[2] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR
[3] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauchn. semin. POMI, 322, 2005, 83–106
[4] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92
[5] V. G. Zhuravlev, “Universalnye yadernye razbieniya”, Zap. nauchn. semin. POMI, 490, 2020, 49–93
[6] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauchn. semin. POMI, 479, 2019, 85–120
[7] P. Arnoux, V. Berthé, S. Ito, “Discrete planes, $\mathbb{Z}^2$-actions, Jacobi-Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 305–349 | DOI | MR
[8] V. Berthé, L. Vuillon, “Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences”, Discrete Math., 223 (2000), 27–53 | DOI | MR
[9] V. Berthé, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals and tilings”, Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 248–323 | MR
[10] S. Ito, M. Ohtsuki, “Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | MR
[11] S. Ito, M. Ohtsuki, “Parallelogram tilings and Jacobi-Perron algorithm”, Tokyo J. Math., 17:1 (1994), 33–58 | DOI | MR
[12] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210
[13] A. V. Shutov, A. V. Maleev, “Quasiperiodic plane tilings based on stepped surfaces”, Acta Crystallogr., A64 (2008), 376–382 | DOI | MR
[14] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR
[15] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102
[16] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019
[17] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145
[18] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR
[19] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR