Differentiating of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 28-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the universal $d$-dimensional karyon tilings $\mathcal{T}(\mathbf{m}, v)$. Its parameters, the weight vector $\mathbf{m}$ and the star $v$, belong to the dual module space $\triangle^d \times \triangle^d$ that is the direct product of two $d$-dimensional simplexes. The star $v$ defines the geometry of the parallelepipeds $T_{0}, T_{1}, \ldots, T_{d}$, which the tiling $\mathcal{T}(\mathbf{m},v)$ consists of, and the weight vector $\mathbf{m}$ sets the local rules and frequency distribution of the parallelepipeds in the tiling. Knowing the parameters $\mathbf{m}, v$, by the local algorithm $\mathcal{A}$ anyone can construct the whole tiling $\mathcal{T}(\mathbf{m},v)$. It is proved that the differentiation of the karyon tiling $\mathcal{T}(\mathbf{m},v)\rightarrow \mathcal{T}^{\sigma}(\mathbf{m}, v)$ is equivalent to some explicitly defined elementary transformation of the centered unimodular basis $\mathbf{u}$.
@article{ZNSL_2022_511_a1,
     author = {V. G. Zhuravlev},
     title = {Differentiating of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--53},
     year = {2022},
     volume = {511},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Differentiating of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 28
EP  - 53
VL  - 511
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/
LA  - ru
ID  - ZNSL_2022_511_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Differentiating of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 28-53
%V 511
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/
%G ru
%F ZNSL_2022_511_a1
V. G. Zhuravlev. Differentiating of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 28-53. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/

[1] V. G. Zhuravlev, “Universalnye yadernye razbieniya”, Zapiski nauchn. semin. POMI, 490, 2020, 49–93

[2] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92

[3] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovrem. problemy matematiki, 299, MIAN, 2017, 283–303

[4] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | MR

[5] G. Rauzy, “Nombres alge$^{\! \! '\!}$briques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR

[6] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauchn. semin. POMI, 322, 2005, 83–106

[7] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauchn. semin. POMI, 479, 2019, 85–120

[8] V. I. Arnold, Gyuigens i Barrou, Nyuton i Guk, Nauka, M., 1989 | MR

[9] P. Arnoux, V. Berthé, S. Ito, “Discrete planes, $\mathbb{Z}^2$-actions, Jacobi-Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 305–349 | DOI | MR

[10] V. Berthé, L. Vuillon, “Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences”, Discrete Math., 223 (2000), 27–53 | DOI | MR

[11] V. Berthé, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals and tilings”, Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 248–323 | MR

[12] S. Ito, M. Ohtsuki, “Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | MR

[13] V. G. Zhuravlev, “Lokalnaya struktura yadernykh razbienii”, Zap. nauchn. semin. POMI, 502, 2021, 32–73

[14] V. G. Zhuravlev, “Simmetrii yadernykh razbienii”, Zap. nauchn. semin. POMI, 502, 2021, 74–121

[15] V. G. Zhuravlev, “Kombinatorika yadernykh razbienii”, Zap. nauchn. semin. POMI, 511, 2022, 54–99 | MR

[16] V. G. Zhuravlev, “Simmetrii universalnykh yadernykh razbienii”, Zap. nauchn. semin. POMI, 511, 2022, 100–136 | MR

[17] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210

[18] A. V. Shutov, A. V. Maleev, “Quasiperiodic plane tilings based on stepped surfaces”, Acta Crystallogr., A64 (2008), 376–382 | DOI | MR

[19] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR

[20] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145

[21] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102

[22] S. Ito, M. Ohtsuki, “Parallelogram tilings and Jacobi-Perron algorithm”, Tokyo J. Math., 17:1 (1994), 33–58 | DOI | MR

[23] P. Arnoux, V. Berthé, H. Ei, Sh. Ito, “Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions”, Maison de l'Informatique et des Mathématiques Discrètes (MIMD) (Paris, France, 2001), 59–78 | MR

[24] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019