Differentiating of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 28-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the universal $d$-dimensional karyon tilings $\mathcal{T}(\mathbf{m}, v)$. Its parameters, the weight vector $\mathbf{m}$ and the star $v$, belong to the dual module space $\triangle^d \times \triangle^d$ that is the direct product of two $d$-dimensional simplexes. The star $v$ defines the geometry of the parallelepipeds $T_{0}, T_{1}, \ldots, T_{d}$, which the tiling $\mathcal{T}(\mathbf{m},v)$ consists of, and the weight vector $\mathbf{m}$ sets the local rules and frequency distribution of the parallelepipeds in the tiling. Knowing the parameters $\mathbf{m}, v$, by the local algorithm $\mathcal{A}$ anyone can construct the whole tiling $\mathcal{T}(\mathbf{m},v)$. It is proved that the differentiation of the karyon tiling $\mathcal{T}(\mathbf{m},v)\rightarrow \mathcal{T}^{\sigma}(\mathbf{m}, v)$ is equivalent to some explicitly defined elementary transformation of the centered unimodular basis $\mathbf{u}$.
@article{ZNSL_2022_511_a1,
     author = {V. G. Zhuravlev},
     title = {Differentiating of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--53},
     publisher = {mathdoc},
     volume = {511},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Differentiating of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 28
EP  - 53
VL  - 511
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/
LA  - ru
ID  - ZNSL_2022_511_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Differentiating of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 28-53
%V 511
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/
%G ru
%F ZNSL_2022_511_a1
V. G. Zhuravlev. Differentiating of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 28-53. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a1/