@article{ZNSL_2021_509_a8,
author = {A. V. Ivanov and M. A. Russkikh},
title = {Quantum field theory on the example of the simplest cubic model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--152},
year = {2021},
volume = {509},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a8/}
}
A. V. Ivanov; M. A. Russkikh. Quantum field theory on the example of the simplest cubic model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 123-152. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a8/
[1] N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Field, 3rd edition, John Wiley $\$ Sons Inc., 1980
[2] M. E. Peskin, D. V. Schroeder, Introduction to Quantum Field Theory, Westview Press, Boulder, CO, 1995
[3] S. Weinberg, The Quantum Theory of Fields, v. 1, Cambridge University Press, 1995
[4] A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003 | Zbl
[5] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, 2014
[6] P. J. Daniell, “Integrals in an infinite number of dimensions”, Annals Math., 20:4 (1919), 281–288 | DOI | MR
[7] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Graduate Series in Mathematics, 95, American Mathematical Society, 2008 | DOI | Zbl
[8] A. V. Ivanov, “Notes on functional integration”, Zap. Nauchn. Semin. POMI, 487, 2019, 140–150
[9] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Review Modern Phys., 20 (1948), 367–387 | DOI | Zbl
[10] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals: Emended Editon, Dover Publications, 2010
[11] S. K. Lando, Lectures on generating functions, The Student Mathematical Library, 23, 2003, 148 pp. | DOI | Zbl
[12] J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford University Press, USA, 2005 | Zbl
[13] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13 (1982), 33–50 | MR
[14] I. Y. Aref'eva, A. A. Slavnov, L. D. Faddeev, “Generating functional for the S matrix in gauge-invariant theories”, Theor. Math. Phys., 21 (1974), 1165–1172 | DOI
[15] L. D. Faddeev, Mass in Quantum Yang-Mills Theory: Comment on a Clay Millenium problem, 2009, arXiv: 0911.1013 [math-ph]
[16] A. V. Ivanov, N. V. Kharuk, “Quantum equation of motion and two-loop cutoff renormalization for $\phi^3$ model”, Zap. Nauchn. Semin. POMI, 487, 2019, 151–166
[17] A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics, CRC Press, 1998
[18] P. Cvitanovi, Field Theory, Nordita Classics Illustrated, Copenhagen, Denmark, 1983
[19] O. Valle, M. Soares, Airy Functions and Applications to Physics, Imperial College Press, 2010
[20] N. Christofides, Graph theory: an algorithmic approach, Academic Press, London, 1975 | Zbl
[21] P. L. Walker, An introduction to complex analysis, Wiley, New York, 1975