Quantum field theory on the example of the simplest cubic model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 123-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the description of the basic tools of quantum field theory on the example of the simplest cubic model. We introduce concepts such as the functional integral, generating functions, the background field method and the Feynman diagram technique, as well as consider the connections between them. The model in question allows you to perform all calculations explicitly. We also provide all the necessary proofs and derivations.
@article{ZNSL_2021_509_a8,
     author = {A. V. Ivanov and M. A. Russkikh},
     title = {Quantum field theory on the example of the simplest cubic model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--152},
     year = {2021},
     volume = {509},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a8/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - M. A. Russkikh
TI  - Quantum field theory on the example of the simplest cubic model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 123
EP  - 152
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a8/
LA  - ru
ID  - ZNSL_2021_509_a8
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A M. A. Russkikh
%T Quantum field theory on the example of the simplest cubic model
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 123-152
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a8/
%G ru
%F ZNSL_2021_509_a8
A. V. Ivanov; M. A. Russkikh. Quantum field theory on the example of the simplest cubic model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 123-152. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a8/

[1] N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Field, 3rd edition, John Wiley $\$ Sons Inc., 1980

[2] M. E. Peskin, D. V. Schroeder, Introduction to Quantum Field Theory, Westview Press, Boulder, CO, 1995

[3] S. Weinberg, The Quantum Theory of Fields, v. 1, Cambridge University Press, 1995

[4] A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003 | Zbl

[5] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, 2014

[6] P. J. Daniell, “Integrals in an infinite number of dimensions”, Annals Math., 20:4 (1919), 281–288 | DOI | MR

[7] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Graduate Series in Mathematics, 95, American Mathematical Society, 2008 | DOI | Zbl

[8] A. V. Ivanov, “Notes on functional integration”, Zap. Nauchn. Semin. POMI, 487, 2019, 140–150

[9] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Review Modern Phys., 20 (1948), 367–387 | DOI | Zbl

[10] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals: Emended Editon, Dover Publications, 2010

[11] S. K. Lando, Lectures on generating functions, The Student Mathematical Library, 23, 2003, 148 pp. | DOI | Zbl

[12] J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford University Press, USA, 2005 | Zbl

[13] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13 (1982), 33–50 | MR

[14] I. Y. Aref'eva, A. A. Slavnov, L. D. Faddeev, “Generating functional for the S matrix in gauge-invariant theories”, Theor. Math. Phys., 21 (1974), 1165–1172 | DOI

[15] L. D. Faddeev, Mass in Quantum Yang-Mills Theory: Comment on a Clay Millenium problem, 2009, arXiv: 0911.1013 [math-ph]

[16] A. V. Ivanov, N. V. Kharuk, “Quantum equation of motion and two-loop cutoff renormalization for $\phi^3$ model”, Zap. Nauchn. Semin. POMI, 487, 2019, 151–166

[17] A. N. Vasiliev, Functional Methods in Quantum Field Theory and Statistical Physics, CRC Press, 1998

[18] P. Cvitanovi, Field Theory, Nordita Classics Illustrated, Copenhagen, Denmark, 1983

[19] O. Valle, M. Soares, Airy Functions and Applications to Physics, Imperial College Press, 2010

[20] N. Christofides, Graph theory: an algorithmic approach, Academic Press, London, 1975 | Zbl

[21] P. L. Walker, An introduction to complex analysis, Wiley, New York, 1975