A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 173-182
Voir la notice de l'article provenant de la source Math-Net.Ru
As an analog to the Riemann hypothesis, we prove that the real parts of all complex zeros of the Krawtchouk polynomials, as well as of the discrete Chebyshev polynomials, of order $N=-1$ are equal to $-\frac{1}{2}$. For these polynomials, we also derive a functional equation analogous to that for the Riemann zeta function.
@article{ZNSL_2021_507_a9,
author = {N. Gogin and M. Hirvensalo},
title = {A {Riemann} hypothesis analog for the {Krawtchouk} and discrete {Chebyshev} polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--182},
publisher = {mathdoc},
volume = {507},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/}
}
TY - JOUR AU - N. Gogin AU - M. Hirvensalo TI - A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 173 EP - 182 VL - 507 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/ LA - en ID - ZNSL_2021_507_a9 ER -
N. Gogin; M. Hirvensalo. A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 173-182. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/