A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 173-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As an analog to the Riemann hypothesis, we prove that the real parts of all complex zeros of the Krawtchouk polynomials, as well as of the discrete Chebyshev polynomials, of order $N=-1$ are equal to $-\frac{1}{2}$. For these polynomials, we also derive a functional equation analogous to that for the Riemann zeta function.
@article{ZNSL_2021_507_a9,
     author = {N. Gogin and M. Hirvensalo},
     title = {A {Riemann} hypothesis analog for the {Krawtchouk} and discrete {Chebyshev} polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--182},
     year = {2021},
     volume = {507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/}
}
TY  - JOUR
AU  - N. Gogin
AU  - M. Hirvensalo
TI  - A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 173
EP  - 182
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/
LA  - en
ID  - ZNSL_2021_507_a9
ER  - 
%0 Journal Article
%A N. Gogin
%A M. Hirvensalo
%T A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 173-182
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/
%G en
%F ZNSL_2021_507_a9
N. Gogin; M. Hirvensalo. A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 173-182. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/

[1] C. M. Bender, D. C. Brody, M. P. Müller, “Hamiltonian for the zeros of the Riemann zeta function”, Phys. Rev. Lett., 118 (2017), 130201 | DOI | MR

[2] D. Bump, K. Choi, P. Kurlberg, J. Vaaler, “A local Riemann hypothesis”, Math. Z., 233:1 (2000), 1–18 | DOI | MR

[3] N. Gogin, M. Hirvensalo, “Recurrent construction of MacWilliams and Chebyshev matrices”, Fund. Inf., 116:1–4 (2012), 93–110 | MR | Zbl

[4] N. Gogin, M. Hirvensalo, “On the generating function of discrete Chebyshev polynomials”, Zap. Nauchn. Semin. POMI, 448, 2016, 124–134

[5] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 4th edition, Oxford Univ. Press, 1960 | Zbl

[6] M. Hirvensalo, Quantum Computing, 2nd edition, Springer, 2004 | Zbl

[7] V. P. Il'in, Yu. I. Kuznetsov, Tridiagonal Matrices and Their Applications, Nauka, M., 1985 | Zbl

[8] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, 1977 | Zbl

[9] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., 1939

[10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edition, ed. D. R. Heath-Brown, The Clarendon Press, Oxford Univ. Press, New York, 1986

[11] A. Odlyzko, Correspondence about the origins of the Hilbert–Polya conjecture, http://www.dtc.umn.edu/õdlyzko/polya/index.html

[12] Millenium prize problems, Wikipedia, https://en.wikipedia.org/wiki/Millennium_Prize_Problems

[13] Tridiagonal matrix, Wikipedia, https://en.wikipedia.org/wiki/Tridiagonal_matrix