@article{ZNSL_2021_507_a9,
author = {N. Gogin and M. Hirvensalo},
title = {A {Riemann} hypothesis analog for the {Krawtchouk} and discrete {Chebyshev} polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--182},
year = {2021},
volume = {507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/}
}
N. Gogin; M. Hirvensalo. A Riemann hypothesis analog for the Krawtchouk and discrete Chebyshev polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 173-182. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a9/
[1] C. M. Bender, D. C. Brody, M. P. Müller, “Hamiltonian for the zeros of the Riemann zeta function”, Phys. Rev. Lett., 118 (2017), 130201 | DOI | MR
[2] D. Bump, K. Choi, P. Kurlberg, J. Vaaler, “A local Riemann hypothesis”, Math. Z., 233:1 (2000), 1–18 | DOI | MR
[3] N. Gogin, M. Hirvensalo, “Recurrent construction of MacWilliams and Chebyshev matrices”, Fund. Inf., 116:1–4 (2012), 93–110 | MR | Zbl
[4] N. Gogin, M. Hirvensalo, “On the generating function of discrete Chebyshev polynomials”, Zap. Nauchn. Semin. POMI, 448, 2016, 124–134
[5] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 4th edition, Oxford Univ. Press, 1960 | Zbl
[6] M. Hirvensalo, Quantum Computing, 2nd edition, Springer, 2004 | Zbl
[7] V. P. Il'in, Yu. I. Kuznetsov, Tridiagonal Matrices and Their Applications, Nauka, M., 1985 | Zbl
[8] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, 1977 | Zbl
[9] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., 1939
[10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edition, ed. D. R. Heath-Brown, The Clarendon Press, Oxford Univ. Press, New York, 1986
[11] A. Odlyzko, Correspondence about the origins of the Hilbert–Polya conjecture, http://www.dtc.umn.edu/õdlyzko/polya/index.html
[12] Millenium prize problems, Wikipedia, https://en.wikipedia.org/wiki/Millennium_Prize_Problems
[13] Tridiagonal matrix, Wikipedia, https://en.wikipedia.org/wiki/Tridiagonal_matrix