@article{ZNSL_2021_507_a2,
author = {P. G. Zograf},
title = {Tensor networks and the enumerative geometry of graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--34},
year = {2021},
volume = {507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a2/}
}
P. G. Zograf. Tensor networks and the enumerative geometry of graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 26-34. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a2/
[1] S. V. Chmutov, S. V. Duzhin, A. I. Kaishev, “The algebra of $3$-graphs”, Trans. Steklov Math. Inst., 221 (1998), 157–186 | Zbl
[2] D. Bar-Natan, “Lie algebras and the four color theorem”, Combinatorica, 17 (1997), 43–52 | DOI | MR | Zbl
[3] I. Markov, Y. Shi, “Simulating quantum computation by contracting tensor networks”, SIAM J. Comput., 38 (2005), 963–981 | DOI
[4] R. Penrose, “Applications of negative dimensional tensors”, Combinatorial Mathematics and Its Applications, ed. D. J. A. Welsh, Academic Press, 1971, 221–244
[5] N. Robertson, P. D. Seymour, “Graph minors. X. Obstructions to tree-decompositions”, J. Combin. Theory Ser. B, 52 (1991), 153–190 | DOI | MR | Zbl
[6] J. Sylvester, “Sur les covariants irréductibles du quantic binaire de huitième order”, Collected Mathematical Papers of J. J. Sylvester, v. III, Cambridge Univ. Press, 1909, 481–488
[7] W. T. Tutte, Graph Theory, Addison-Wesley, 1984 | Zbl
[8] P. Zograf, The enumeration of edge colorings and Hamiltonian cycles by means of symmetric tensors, arXiv: math.CO/0403339
[9] P. Zograf, Tensor networks and the enumeration of regular subgraphs, arXiv: math.CO/0605256