@article{ZNSL_2021_507_a10,
author = {V. V. Kornyak},
title = {Subsystems of an isolated quantum system in finite quantum mechanics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--202},
year = {2021},
volume = {507},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/}
}
V. V. Kornyak. Subsystems of an isolated quantum system in finite quantum mechanics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 183-202. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/
[1] D. N. Page, W. K. Wootters, “Evolution without evolution: Dynamics described by stationary observables”, Phys. Rev. D, 27 (1983), 2885–2892 | DOI
[2] S. M. Carroll, A. Singh, “Quantum mereology: Factorizing Hilbert space into subsystems with quasiclassical dynamics”, Phys. Rev. A, 103:2 (2021), 022213 | DOI
[3] Ch. J. Cao, S. M. Carroll, S. Michalakis, “Space from Hilbert space: Recovering geometry from bulk entanglement”, Phys. Rev. D, 95:2 (2017), 024031 | DOI | MR
[4] M. Woods, “The Page–Wootters mechanism $36$ years on: a consistent formulation which accounts for interacting systems”, Quantum Views, 3 (2019), 16 | DOI
[5] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary edition, Cambridge Univ. Press, 2016
[6] V. V. Kornyak, “Quantum models based on finite groups”, J. Phys.: Conf. Series, 965 (2018), 012023 | DOI
[7] V. V. Kornyak, “Modeling quantum behavior in the framework of permutation groups”, EPJ Web of Conferences, 173 (2018), 01007 | DOI
[8] V. V. Kornyak, “Mathematical modeling of finite quantum systems”, Lect. Notes Comput. Sci., 7125, 2012, 79–93 | DOI
[9] T. Banks, Finite deformations of quantum mechanics, 2020, arXiv: 2001.07662 [hep-th]
[10] G. 't Hooft, The Cellular Automaton Interpretation of Quantum Mechanics, Springer, 2016 | Zbl
[11] M. J. Collins, “On Jordan's theorem for complex linear groups”, J. Group Theory, 10:4 (2007), 411–423 | DOI | MR | Zbl
[12] A. Rényi, “On measures of entropy and information”, Proc. 4th Berkeley Symp. Math. Stat. Probab., v. 1, 1961, 547–561 | Zbl
[13] Č. Brukner, A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements”, Phys. Rev. A, 63:2 (2001), 022113 | DOI
[14] M. Van Raamsdonk, “Building up spacetime with quantum entanglement”, Gen. Rel. Grav., 42 (2010), 2323–2329 | DOI | Zbl
[15] J. Maldacena, L. Susskind, “Cool horizons for entangled black holes”, Fortschr. Phys., 61:9 (2013), 781–811 | DOI | MR | Zbl