Subsystems of an isolated quantum system in finite quantum mechanics
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 183-202

Voir la notice de l'article provenant de la source Math-Net.Ru

Any Hilbert space with composite dimension can be decomposed into a tensor product of Hilbert spaces of lower dimensions. Such a factorization makes it possible to decompose a quantum system into subsystems. Using a modification of quantum mechanics, in which the continuous unitary group in a Hilbert space is replaced with a permutation representation of a finite group, we suggest a model for the constructive study of decompositions of an isolated quantum system into subsystems. To investigate the behavior of composite systems resulting from decompositions, we develop algorithms based on methods of computer algebra and computational group theory.
@article{ZNSL_2021_507_a10,
     author = {V. V. Kornyak},
     title = {Subsystems of an isolated quantum system in finite quantum mechanics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--202},
     publisher = {mathdoc},
     volume = {507},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/}
}
TY  - JOUR
AU  - V. V. Kornyak
TI  - Subsystems of an isolated quantum system in finite quantum mechanics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 183
EP  - 202
VL  - 507
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/
LA  - ru
ID  - ZNSL_2021_507_a10
ER  - 
%0 Journal Article
%A V. V. Kornyak
%T Subsystems of an isolated quantum system in finite quantum mechanics
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 183-202
%V 507
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/
%G ru
%F ZNSL_2021_507_a10
V. V. Kornyak. Subsystems of an isolated quantum system in finite quantum mechanics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 183-202. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/