Subsystems of an isolated quantum system in finite quantum mechanics
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 183-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Any Hilbert space with composite dimension can be decomposed into a tensor product of Hilbert spaces of lower dimensions. Such a factorization makes it possible to decompose a quantum system into subsystems. Using a modification of quantum mechanics, in which the continuous unitary group in a Hilbert space is replaced with a permutation representation of a finite group, we suggest a model for the constructive study of decompositions of an isolated quantum system into subsystems. To investigate the behavior of composite systems resulting from decompositions, we develop algorithms based on methods of computer algebra and computational group theory.
@article{ZNSL_2021_507_a10,
     author = {V. V. Kornyak},
     title = {Subsystems of an isolated quantum system in finite quantum mechanics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--202},
     year = {2021},
     volume = {507},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/}
}
TY  - JOUR
AU  - V. V. Kornyak
TI  - Subsystems of an isolated quantum system in finite quantum mechanics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 183
EP  - 202
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/
LA  - ru
ID  - ZNSL_2021_507_a10
ER  - 
%0 Journal Article
%A V. V. Kornyak
%T Subsystems of an isolated quantum system in finite quantum mechanics
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 183-202
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/
%G ru
%F ZNSL_2021_507_a10
V. V. Kornyak. Subsystems of an isolated quantum system in finite quantum mechanics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 183-202. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a10/

[1] D. N. Page, W. K. Wootters, “Evolution without evolution: Dynamics described by stationary observables”, Phys. Rev. D, 27 (1983), 2885–2892 | DOI

[2] S. M. Carroll, A. Singh, “Quantum mereology: Factorizing Hilbert space into subsystems with quasiclassical dynamics”, Phys. Rev. A, 103:2 (2021), 022213 | DOI

[3] Ch. J. Cao, S. M. Carroll, S. Michalakis, “Space from Hilbert space: Recovering geometry from bulk entanglement”, Phys. Rev. D, 95:2 (2017), 024031 | DOI | MR

[4] M. Woods, “The Page–Wootters mechanism $36$ years on: a consistent formulation which accounts for interacting systems”, Quantum Views, 3 (2019), 16 | DOI

[5] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary edition, Cambridge Univ. Press, 2016

[6] V. V. Kornyak, “Quantum models based on finite groups”, J. Phys.: Conf. Series, 965 (2018), 012023 | DOI

[7] V. V. Kornyak, “Modeling quantum behavior in the framework of permutation groups”, EPJ Web of Conferences, 173 (2018), 01007 | DOI

[8] V. V. Kornyak, “Mathematical modeling of finite quantum systems”, Lect. Notes Comput. Sci., 7125, 2012, 79–93 | DOI

[9] T. Banks, Finite deformations of quantum mechanics, 2020, arXiv: 2001.07662 [hep-th]

[10] G. 't Hooft, The Cellular Automaton Interpretation of Quantum Mechanics, Springer, 2016 | Zbl

[11] M. J. Collins, “On Jordan's theorem for complex linear groups”, J. Group Theory, 10:4 (2007), 411–423 | DOI | MR | Zbl

[12] A. Rényi, “On measures of entropy and information”, Proc. 4th Berkeley Symp. Math. Stat. Probab., v. 1, 1961, 547–561 | Zbl

[13] Č. Brukner, A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements”, Phys. Rev. A, 63:2 (2001), 022113 | DOI

[14] M. Van Raamsdonk, “Building up spacetime with quantum entanglement”, Gen. Rel. Grav., 42 (2010), 2323–2329 | DOI | Zbl

[15] J. Maldacena, L. Susskind, “Cool horizons for entangled black holes”, Fortschr. Phys., 61:9 (2013), 781–811 | DOI | MR | Zbl