Fractional-matrix invariance of Diophantine systems of linear forms
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 5-31

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that under linear fractional unimodular transformations $\alpha \mapsto \alpha'= \frac{a \alpha + b} {c \alpha + d}$ the real numbers $\alpha $ and $\alpha'$ keep their expansions in the usual continued fractions up to a finite number of initial incomplete quotients. For this reason, these numbers have the same approximation speeds by their convergent fractions. This result is generalized to $(l \times k)$-matrices $ \alpha $. It is proved, if $ \alpha \mapsto \alpha'= (A \alpha + B)\cdot(C \alpha + D)^{- 1}$ for some fractional matrix unimodular transformation, then matrices $ \alpha $ and $ \alpha'$ have the same approximation speeds too. To prove this result we used the $\mathcal{L}$-algorithm based on the method of localizing units in algebraic number fields.
@article{ZNSL_2021_502_a0,
     author = {V. G. Zhuravlev},
     title = {Fractional-matrix invariance of {Diophantine} systems of linear forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     publisher = {mathdoc},
     volume = {502},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a0/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Fractional-matrix invariance of Diophantine systems of linear forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 5
EP  - 31
VL  - 502
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a0/
LA  - ru
ID  - ZNSL_2021_502_a0
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Fractional-matrix invariance of Diophantine systems of linear forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 5-31
%V 502
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a0/
%G ru
%F ZNSL_2021_502_a0
V. G. Zhuravlev. Fractional-matrix invariance of Diophantine systems of linear forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a0/