@article{ZNSL_2021_502_a0,
author = {V. G. Zhuravlev},
title = {Fractional-matrix invariance of {Diophantine} systems of linear forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--31},
year = {2021},
volume = {502},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a0/}
}
V. G. Zhuravlev. Fractional-matrix invariance of Diophantine systems of linear forms. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a0/
[1] V. G. Zhuravlev, “$\mathcal{L}$-algoritm approksimatsii diofantovykh sistem lineinykh form”, Algebra i analiz, 490 (2020), 25–48
[2] A. Ya. Khinchin, Tsepnye drobi, Chetvertoe izd., Nauka, M., 1978, 112 pp.
[3] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983, 228 pp.
[4] V. G. Zhuravlev, “Lokalizovannye matritsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 458, 2017, 104–134
[5] V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Algebra i analiz, 490 (2020), 5–24
[6] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Mathematics of computation, 25:113 (1971), 163–180 | DOI | MR | Zbl
[7] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Mathematics of computation, 26:120 (1972), 977–993 | DOI | MR | Zbl
[8] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Trete izd., Nauka, M., 1985
[9] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195
[10] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20
[11] V. G. Zhuravlev, “Drobno-lineinaya invariantnost mnogomernykh tsepnykh drobei”, Zap. nauch. semin. POMI, 458, 2017, 42–76
[12] V. G. Zhuravlev, “Drobno-lineinaya invariantnost simpleks-modulnogo algoritma razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 458, 2017, 77–103