One-sided selfish parking
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 194-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $n$ be an integer number. If $n>1$ then we randomly locate an interval $(t,t+1)$ with integer endpoints on a segment $[0,n]$. Thus the original segment is divided into two: $[0,t]$ and $[t+1,n]$ and each of them will be further considered separately likewise the original one. The phrase “randomly” in this problem means that $t$ is a uniformly distributed on a set $\{1,\ldots,n-1\}$ random variable. The process of location of the intervals finishes when the lengths of all the remaining intervals are less than two. Define as $X_n$ the total amount of the located intervals. In this paper the expectations $\mathbb{E}\{X_n\}$ were calculated. The process described above can be interpreted as a parking process of cars with handlebars on the left. Hence the driver is able to leave his car only if the place on his left is free. This is exactly the case when the driver cannot take the left end place of any free segment. In this case $X_n$ stands for the amount of the parked cars.
@article{ZNSL_2021_501_a12,
     author = {N. A. Kryukov},
     title = {One-sided selfish parking},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--202},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a12/}
}
TY  - JOUR
AU  - N. A. Kryukov
TI  - One-sided selfish parking
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 194
EP  - 202
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a12/
LA  - ru
ID  - ZNSL_2021_501_a12
ER  - 
%0 Journal Article
%A N. A. Kryukov
%T One-sided selfish parking
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 194-202
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a12/
%G ru
%F ZNSL_2021_501_a12
N. A. Kryukov. One-sided selfish parking. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 194-202. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a12/

[1] A. Rényi, “On a one-dimensional problem concerning space-filling”, Publ. Math. Inst. Hungarian Acad. Scie., 3 (1958), 109–127 | MR

[2] A. Dvoretzky, H. Robbins, “On the “parking” problem”, Publ. Math. Inst. Hungarian Acad. Scie., 9 (1964), 209–226 | MR

[3] R. G. Pinsky, Problems from the Discrete to the Continuous, v. 3, Springer International Publishing Switzerland, 2014, 21–34 | DOI

[4] N. A. Kryukov, “Diskretizatsiya zadachi o parkovke”, Vestn. S.-P. un-ta, Matematika, mekhanika, astronomiya, 7(65):4 (2019), 662–677 | DOI

[5] S. M .Ananevskii, N. A. Kryukov, “Asimptoticheskaya normalnost v diskretnom analoge zadachi o parkovke”, Zap. nauchn. semin. POMI, 495, 2020, 9–36 | MR

[6] S. M. Ananevskii, N. A. Kryukov, “Zadacha ob egoistichnoi parkovke”, Vestn. S.-P. un-ta, Matematika, mekhanika, astronomiya, 5(63):4 (2018), 549–555 | DOI | MR

[7] S. M. Ananevskii, N. A. Kryukov, “Ob asimptoticheskoi normalnosti v odnom obobschenii zadachi Reni”, Vestn. S.-P. un-ta, Matematika, mekhanika, astronomiya, 6(64):3 (2019), 353–362 | DOI

[8] M. P. Clay, N. J. Simanyi, “Rényi's parking problem revisited”, Stoch. Dynam., 16:2 (2016) | DOI | Zbl

[9] L. Gerin, “The Page-Rényi parking process”, Electr. J. Comb., 22:4 (2015), P4.4 | MR | Zbl

[10] S. M. Ananevskii, “Nekotorye obobscheniya zadachi o “parkovke””, Vestn. S.-P. un-ta, Matematika, mekhanika, astronomiya, 3(61):4 (2016), 525–532 | DOI

[11] S. M. Ananevskii, “Zadacha parkovki dlya otrezkov razlichnoi dliny”, Zap. nauchn. semin. POMI, 228, 1996, 16–23

[12] A. B. Ilєnko, V. V. Fatenko, “Uzagalnennya zadachi Renï pro parkuvannya”, Naukovi visti NTUU “KPI”: mizhnarodnii naukovo-tekhnichnii zhurnal, 2017, no. 4 (114), 54–60

[13] P. Billingsley, Probability and Measure, Third Edition, A Wiley-Interscience Publication, John Wiley Sons, New York, 1985