The structure of formal modules as Galois modules in cyclic unramified $p$-extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 37-50
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of the formal module $F(\mathfrak{M})$ for a chain of finite extensions $M/L/K$, where $M/L$ is an unramified $p$-extension, is studied. The triviality of the first Galois cohomology of a formal module for an unramified extension for any degree of a prime ideal is shown. The presentation of the investigated formal module is constructed in terms of generators and relations. As an application of the main result, the structure of a formal module for generalized Lubin–Tate formal groups is obtained.
@article{ZNSL_2021_500_a3,
author = {S. V. Vostokov and V. M. Polyakov},
title = {The structure of formal modules as {Galois} modules in cyclic unramified $p$-extensions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--50},
publisher = {mathdoc},
volume = {500},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/}
}
TY - JOUR AU - S. V. Vostokov AU - V. M. Polyakov TI - The structure of formal modules as Galois modules in cyclic unramified $p$-extensions JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 37 EP - 50 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/ LA - ru ID - ZNSL_2021_500_a3 ER -
S. V. Vostokov; V. M. Polyakov. The structure of formal modules as Galois modules in cyclic unramified $p$-extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 37-50. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/