The structure of formal modules as Galois modules in cyclic unramified $p$-extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 37-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The structure of the formal module $F(\mathfrak{M})$ for a chain of finite extensions $M/L/K$, where $M/L$ is an unramified $p$-extension, is studied. The triviality of the first Galois cohomology of a formal module for an unramified extension for any degree of a prime ideal is shown. The presentation of the investigated formal module is constructed in terms of generators and relations. As an application of the main result, the structure of a formal module for generalized Lubin–Tate formal groups is obtained.
@article{ZNSL_2021_500_a3,
     author = {S. V. Vostokov and V. M. Polyakov},
     title = {The structure of formal modules as {Galois} modules in cyclic unramified $p$-extensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--50},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - V. M. Polyakov
TI  - The structure of formal modules as Galois modules in cyclic unramified $p$-extensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 37
EP  - 50
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/
LA  - ru
ID  - ZNSL_2021_500_a3
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A V. M. Polyakov
%T The structure of formal modules as Galois modules in cyclic unramified $p$-extensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 37-50
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/
%G ru
%F ZNSL_2021_500_a3
S. V. Vostokov; V. M. Polyakov. The structure of formal modules as Galois modules in cyclic unramified $p$-extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 37-50. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a3/

[1] K. Iwasawa, “On Galois groups of local fields”, Trans. Amer. Soc., 80:2 (1955), 448–469 | DOI | MR | Zbl

[2] K. Iwasawa, “On local cyclotomic fields”, J. Math. Soc., 12:1 (1960), 16–21 | MR | Zbl

[3] M. Krasner, “Sur la representation exponentielle dans les corps relativement galoisiens de nombres p-adiques”, Acta Arithmetica, 3:1 (1939), 133–173 | DOI | Zbl

[4] Z. I. Borevich, “Multiplikativnaya gruppa regulyarnogo polya s tsiklicheskoi gruppoi operatorov”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 707–712 | Zbl

[5] Z. I. Borevich, S. V. Vostokov, “Koltso tselykh elementov rasshireniya prostoi stepeni lokalnogo polya kak modul Galua”, Zap. nauchn. semin. LOMI, 31, 1973, 24–37 | Zbl

[6] S. V. Vostokov, “Idealy abeleva p-rasshireniya lokalnogo polya kak moduli Galua”, Zap. nauchn. semin. LOMI, 57, 1976, 64–84 | Zbl

[7] S. V. Vostokov, I. I. Nekrasov, “Formalnyi modul Lyubina-Teita v tsiklicheskom nerazvetvlennom $p$-rasshirenii kak modul Galua”, Zap. nauchn. semin. POMI, 430, 2014, 61–66

[8] T. L. Akopyan, S. V. Vostokov, “Formalnyi modul Khondy v nerazvetvlennom r-rasshirenii lokalnogo polya kak modul Galua”, Vestnik S.-Peterburg. un-ta. Mat. Mekh. Astr., 5 (63):4 (2018), 541–548 | MR

[9] V. A. Kolyvagin, “Formalnye gruppy i simvol normennogo vycheta”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1054–1120 | MR | Zbl

[10] J. Silverman, The arithmetic of elliptic curves, Grad. texts in math., 1986 | DOI | Zbl

[11] Z. I. Borevich, “O multiplikativnoi gruppe tsiklicheskikh p-rasshirenii lokalnogo polya”, Algebraicheskaya teoriya chisel i predstavleniya, Sb. rabot, Tr. MIAN SSSR, 80, Nauka, M.–L., 1965, 16–29

[12] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions, American Mathematical Society, 2002 | Zbl

[13] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, M., 1983, 183 pp.

[14] A. I. Madunts, R. P. Vostokova, “Formalnye moduli dlya obobschennykh grupp Lyubina-Teita”, Zap. nauchn. semin. POMI, 435, 2015, 95–112