@article{ZNSL_2021_499_a8,
author = {A. M. Alekseev and S. I. Nikolenko},
title = {Recovering word forms by context for~morphologically~rich~languages},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {129--136},
year = {2021},
volume = {499},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a8/}
}
A. M. Alekseev; S. I. Nikolenko. Recovering word forms by context for morphologically rich languages. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 129-136. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a8/
[1] I. Anisimov, V. Polyakov, E. Makarova, V. Solovyev, “Spelling correction in english: Joint use of bi-grams and chunking”, Intelligent Systems Conference (IntelliSys), IEEE, 2017, 886–892
[2] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, 2014, arXiv: 1409.0473
[3] D. Gavrilov, P. Kalaidin, V. Malykh, Self-attentive model for headline generation, 2019, arXiv: 1901.07786
[4] S. Hochreiter, J. Schmidhuber, “Long short-term memory”, Neural Comput., 9:8 (1997), 1735–1780 | DOI
[5] G. Klein, Y. Kim, Y. Deng, J. Senellart, A. M. Rush, OpenNMT: Open-Source Toolkit for Neural Machine Translation, arXiv: 1701.02810
[6] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, Chr. Moran, Zens R., et al., “Moses: Open source toolkit for statistical machine translation”, Proc. the 45th annual meeting of the ACL on interactive poster and demonstration sessions, Association for Computational Linguistics, 2007, 177–180 | DOI
[7] M. Korobov, “Morphological analyzer and generator for russian and ukrainian languages”, Analysis of Images, Social Networks and Texts, Communications in Computer and Information Science, 542, eds. M. Yu. Khachay, N. Konstantinova, A. Panchenko, D. I. Ignatov, V. G. Labunets, Springer International Publishing, 2015, 320–332 (English) | DOI
[8] J. Lee, K. Cho, T. Hofmann, “Fully character-level neural machine translation without explicit segmentation”, Transactions of the Association for Computational Linguistics, 5 (2017), 365–378 | DOI
[9] M.-T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based neural machine translation, 2015, arXiv: 1508.04025
[10] Z. Miftahutdinov, E. Tutubalina, “Deep learning for ICD coding: Looking for medical concepts in clinical documents in english and in French”, Experimental IR Meets Multilinguality, Multimodality, and Interaction (Cham), eds. P. Bellot, Ch. Trabelsi, J. Mothe, F. Murtagh, J. Y. Nie, L. Soulier, E. SanJuan, Linda Cappellato, Nicola Ferro, Springer International Publishing, 2018, 203–215 | DOI
[11] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, NIPS-W, 2017
[12] D. Polykovskiy, D. Soloviev, S. Nikolenko, “Concorde: Morphological agreement in conversational models”, Proc. The 10th Asian Conference on Machine Learning, Proceedings of Machine Learning Research, 95, eds. Jun Zhu, Ichiro Takeuchi, PMLR, 407–421
[13] I. Segalovich, “A fast morphological algorithm with unknown word guessing induced by a dictionary for a web search engine”, MLMTA, Citeseer, 2003, 273–280
[14] D. Sukhonin, A. Panchenko, A python wrapper of the yandex mystem 3.1 morphological analyzer, 2013 https://github.com/nlpub/pymystem3
[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, 2017, arXiv: 1706.03762 | Zbl