@article{ZNSL_2021_499_a3,
author = {T. M. Kosovskaya},
title = {Isomorphism of predicate formulas in artificil intelligence problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {38--52},
year = {2021},
volume = {499},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a3/}
}
T. M. Kosovskaya. Isomorphism of predicate formulas in artificil intelligence problems. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 38-52. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a3/
[1] N. Nilson, Iskusstvennyi intellekt. Metody poiska reshenii, Mir, M., 1973
[2] T. M. Kosovskaya, “Nekotorye zadachi iskusstvennogo intellekta, dopuskayuschie formalizatsiyu na yazyke ischisleniya predikatov, i otsenki chisla shagov ikh resheniya”, Trudy SPIIRAN, 14 (2010), 58–75
[3] S. Rassel, P. Norvig, Iskusstvennyi intellekt: sovremennyi podkhod, Per. s angl., 2-e izd., Izdatelskii dom “Vilyam”, M., 2006, 1408 pp.
[4] T. M. Kosovskaya, D. A. Petrov, “Vydelenie naibolshei obschei podformuly predikatnykh formul dlya resheniya ryada zadach iskusstvennogo intellekta”, Vestnik SPbGU. Prikladnaya matematika. Informatika. Protsessy upravleniya., 13:3 (2017), 250–263 | MR
[5] T. M. Kosovskaya, N. N. Kosovskii, “Polinomialnaya ekvivalentnost zadach izomorfizm predikatnykh formul i izomorfizm grafov”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 6(64):3 (2019), 430–439 | MR | Zbl
[6] T. M. Kosovskaya, “Chastichnaya vyvodimost predikatnykh formul kak sredstvo raspoznavaniya ob'ektov s nepolnoi informatsiei”, Vestn. S.-Peterburg.un-ta, Ser. 10, 2009, no. 1, 74–84
[7] T. Kosovskaya, “Distance between objects described by predicate formulas”, Mathematics of Distances and Applications, International Book Series. Information Science and Computing, 25, eds. M. Deza, M. Petitjean, K. Markov, ITHEA-Publisher, Sofia, Bulgaria, 2012, 153–159
[8] T. M. Kosovskaya, “Nekotorye zadachi iskusstvennogo intellekta, dopuskayuschie formalizatsiyu na yazyke ischisleniya predikatov, i otsenki chisla shagov ikh resheniya”, Trudy SPIIRAN, 2010, no. 14, 58–75
[9] T. M. Kosovskaya, “Mnogourovnevye opisaniya klassov dlya umensheniya chisla shagov resheniya zadach raspoznavaniya obrazov, opisyvaemykh formulami ischisleniya predikatov”, Vestn. S.-Peterburg.un-ta. Ser. 10, 2008, no. 1, 64–72 | MR
[10] M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982
[11] T. M. Kosovskaya, “Postroenie mnogourovnevoi bazy dlya umensheniya vychislitelnoi slozhnosti resheniya zadachi kon'yunktivnyi bulevskii zapros”, Materialy konferentsii “INFORMATsIONNYE TEKhNOLOGII V UPRAVLENII” (ITU-2018), 11-ya Rossiiskaya Multikonferentsiya po Problemam Upravleniya (2–4 Oktyabrya 2018 g., Sankt-Peterburg, Gnts Rf Ao “KONTsERN «TsNII "ELEKTROPRIBOR”), 2018, 33–38
[12] T. M. Kosovskaya, “Vydelenie izomorfnykh podformul kak sredstvo dlya sozdaniya logicheskoi ontologii”, Materialy konferentsii “INFORMATsIONNYE TEKhNOLOGII V UPRAVLENII” (ITU-2020), 12-ya Rossiiskaya Multikonferentsiya po Problemam Upravleniya (7–8 Oktyabrya 2020 g., Sankt-Peterburg, Gnts Rf Ao “KONTsERN "TsNII "ELEKTROPRIBOR”), 2020
[13] T. M. Kosovskaya, “Samoobuchayuschayasya set s yacheikami, realizuyuschimi predikatnye formuly”, Trudy SPIIRAN, 2015, no. 6 (43), 94–113
[14] T. Kosovskaya, “Fuzzy Recognition by Logic-Predicate Network”, Advances in Science, Technology and Engineering Systems J., 5:4 (2020), 686–699 | DOI
[15] T. M. Kosovskaya, “Podkhod k resheniyu zadachi postroeniya mnogourovnevogo opisaniya klassov na yazyke ischisleniya predikatov”, Trudy SPIIRAN, 2014, no. 3 (34), 204–217