Projected and near-projected embeddings
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 75-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A stable smooth map $f N\to M$ is called $k$-realizable if its composition with the inclusion $M\subset M\times\mathbb{R}^k$ is $C^0$-approximable by smooth embeddings; and a $k$-prem if the same composition is $C^\infty$-approximable by smooth embeddings, or, equivalently, if $f$ lifts vertically to a smooth embedding $N\hookrightarrow M\times\mathbb{R}^k$. It is obvious that if $f$ is a $k$-prem, then it is $k$-realizable. We refute the so-called “prem conjecture” that the converse holds. Namely, for each $n=4k+3\ge 15$ there exists a stable smooth immersion $S^n\looparrowright\mathbb{R}^{2n-7}$ that is $3$-realizable but is not a $3$-prem. We also prove the converse in a wide range of cases. A $k$-realizable stable smooth fold map $N^n\to M^{2n-q}$ is a $k$-prem if $q\le n$ and $q\le 2k-3$; or if $q and $k=1$; or if $q\in\{2k-1, 2k-2\}$ and $k\in\{2,4,8\}$ and $n$ is sufficiently large.
@article{ZNSL_2020_498_a6,
     author = {P. M. Akhmetiev and S. A. Melikhov},
     title = {Projected and near-projected embeddings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--104},
     year = {2020},
     volume = {498},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a6/}
}
TY  - JOUR
AU  - P. M. Akhmetiev
AU  - S. A. Melikhov
TI  - Projected and near-projected embeddings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 75
EP  - 104
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a6/
LA  - en
ID  - ZNSL_2020_498_a6
ER  - 
%0 Journal Article
%A P. M. Akhmetiev
%A S. A. Melikhov
%T Projected and near-projected embeddings
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 75-104
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a6/
%G en
%F ZNSL_2020_498_a6
P. M. Akhmetiev; S. A. Melikhov. Projected and near-projected embeddings. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 75-104. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a6/

[1] M. Adachi, Embeddings and Immersions, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[2] P. M. Akhmet'ev, “Prem-mappings, triple self-interesection points of an oriented surface, and Rokhlin's signature theorem”, Mat. Zametki, 59:6 (1996), 803–810 | DOI | MR | Zbl

[3] P. M. Akhmet'ev, “On isotopic and discrete realization of maps of $n$-dimensional sphere in Euclidean space”, Mat. Sb., 187:7 (1996), 3–34 | DOI | MR | Zbl

[4] P. M. Akhmetiev, “Pontryagin–Thom construction for approximation of mappings by embeddings”, Topology Appl., 140 (2004), 133–149 | DOI | MR | Zbl

[5] P. M. Akhmet'ev, P. J. Eccles, “The relationship between framed bordism and skew-framed bordism”, Bull. Lond. Math. Soc., 39 (2007), 473–481 | DOI | MR | Zbl

[6] P. M. Akhmetiev, S. A. Melikhov, D. Repovš, Projected embeddings and near-projected embeddings, Preprint, 2007

[7] P. M. Akhmetiev, D. Repovš, A. B. Skopenkov, “Obstructions to approximating maps of $n$-manifolds into $\mathbb{R}^{2n}$ by embeddings”, Topology Appl., 123 (2002), 3–14 | DOI | MR | Zbl

[8] S. Buoncristiano, C. P. Rourke, B. J. Sanderson, A Geometric Approach to Homology Theory, Cambridge Univ. Press, 1976 | MR | Zbl

[9] J. S. Carter, M. Saito, “Surfaces in $3$-space that do not lift to embeddings in $4$-space”, Knot Theory (Warsaw, 1995), Banach Center Publ., 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, 29–47 | DOI | MR | Zbl

[10] P. E. Conner, E. E. Floyd, “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66 (1960), 416–441 | DOI | MR | Zbl

[11] P. J. Eccles, M. Grant, “Bordism groups of immersions and classes represented by self-intersections”, Algebr. Geom. Topol., 7 (2007), 1081–1097 | DOI | MR | Zbl

[12] D. B. Fuchs, A. T. Fomenko, V. L. Gutenmacher, Homotopic Topology, Moscow State Univ., 1969 (in Russian) ; Revised editions, Nauka, M., 1989; English transl: Akadémiai Kiadó, Budapest, 1986 ; Springer, 2016 | MR | MR | Zbl

[13] C. G. Gibson, K. Wirthmüller, A. A. du Plessis, E. J. N. Looijenga, Topological Stability of Smooth Mappings, Springer-Verlag, Berlin, 1976 | MR | Zbl

[14] C. A. Giller, “Towards a classical knot theory for surfaces in $\mathbb{R}^4$”, Illinois J. Math., 26 (1982), 591–631 | DOI | MR | Zbl

[15] M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York, 1973 | MR | Zbl

[16] A. Haefliger, “Plongements différentiables de variétés dans variétés”, Comment. Math. Helv., 36 (1961), 47–82 | DOI | MR | Zbl

[17] V. L. Hansen, “Embedding finite covering spaces into trivial bundles”, Math. Ann., 236 (1978), 239–243 | DOI | MR | Zbl

[18] R. J. Herbert, Multiple Points of Immersed Manifolds, Mem. Amer. Math. Soc., 34, no. 250, 1981 | MR

[19] M. W. Hirsch, “On piecewise linear immersions”, Proc. Amer. Math. Soc., 16 (1965), 1029–1030 | DOI | MR

[20] R. K. Lashof, S. Smale, “Self-intersections of immersed manifolds”, J. Math. Mech., 8 (1959), 143–157 | MR | Zbl

[21] U. Koschorke, “On link maps and their homotopy classification”, Math. Ann., 286 (1990), 753–782 | DOI | MR | Zbl

[22] U. Koschorke, B. Sanderson, “Geometric interpretations of the generalized Hopf invariant”, Math. Scand., 41 (1977), 199–217 | DOI | MR

[23] E. V. Kulinich, “On topologically equivalent Morse functions on surfaces”, Methods Funct. Anal. Topology, 4:1 (1998), 59–64 | MR | Zbl

[24] J. N. Mather, “Stability of $C^\infty$ mappings. VI: The nice dimensions”, Proceedings of Liverpool Singularities Symposium, v. I, Lect. Notes Math., 192, Springer, Berlin, 1971, 207–253 | DOI | MR

[25] J. P. May, et al., Equivariant Homotopy and Cohomology Theory, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[26] S. A. Melikhov, “On maps with unstable singularities”, Topology Appl., 120 (2002), 105–156 | DOI | MR | Zbl

[27] S. A. Melikhov, “Sphere eversions and realization of mappings”, Proc. Steklov Inst. Math., 247 (2004), 143–163 | MR | Zbl

[28] S. A. Melikhov, “The van Kampen obstruction and its relatives”, Tr. Mat. Inst. Steklova, 266, 2009, 149–183 | MR | Zbl

[29] S. A. Melikhov, “Transverse fundamental group and projected embeddings”, Proc. Steklov Inst. Math., 290 (2015), 155–165 | DOI | MR | Zbl

[30] S. A. Melikhov, Lifting generic maps to embeddings. I: Triangulation and smoothing, arXiv: 2011.01402v1

[31] V. Poénaru, “Some invariants of generic immersions and their geometric applications”, Bull. Amer. Math. Soc., 81 (1975), 1079–1082 | DOI | MR

[32] V. Poénaru, Homotopie reǵulière et isotopie, Publ. Math. Orsay, Univ. Paris XI, U.E.R. Math., Orsay, 1974 | MR

[33] L. S. Pontryagin, “Smooth Manifolds and Their Applications in Homotopy Theory”, Trudy MIAN, 45, 1955 | MR | Zbl

[34] D. Repovš, A. B. Skopenkov, “A deleted product criterion for approximability of maps by embeddings”, Topology Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[35] C. P. Rourke, B. J. Sanderson, “Block bundles. II. Transversality”, Ann. Math., 87 (1968), 256–278 | DOI | MR | Zbl

[36] C. Rourke, B. Sanderson, “The compression theorem. I”, Geom. Topol., 5 (2001), 399–429 | DOI | MR | Zbl

[37] S. Satoh, “Lifting a generic surface in 3-space to an embedded surface in 4-space”, Topology Appl., 106 (2000), 103–113 | DOI | MR | Zbl

[38] K. Siekłucki, “Realization of mappings”, Fund. Math., 65 (1969), 325–343 | DOI | MR | Zbl

[39] A. Szűcs, “Multiple points of singular maps”, Math. Proc. Cambridge Philos. Soc., 100 (1986), 331–346 | DOI | MR | Zbl

[40] A. Szűcs, “On the cobordism groups of immersions and embeddings”, Math. Proc. Cambridge Philos. Soc., 109 (1991), 343–349 | DOI | MR | Zbl

[41] S. P. Tarasov, M. N. Vyalyi, “Some PL functions on surfaces are not height functions”, Proceedings of the 13th Annual Symposium on Computational Geometry (Nice, France), ACM, New York, 1997, 113–118

[42] M. Yamamoto, “Lifting a generic map of a surface into the plane to an embedding into 4-space”, Illinois J. Math., 51 (2007), 705–721 | DOI | MR | Zbl