A block generalization of Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 138-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper introduces the so-called generalized Nekrasov (GN) matrices, which provide a block extension of the conventional Nekrasov matrices. Basic properties of GN matrices are studied. In particular, it is proved that the GN matrices form a subclass of nonsingular $\mathcal{H}$-matrices and this subclass is closed with respect to Schur complements obtained by eliminating leading principal block submatrices. Also an upper bound for the $l_\infty$-norm of the inverse to a GN matrix is obtained, which generalizes the known bound for Nekrasov matrices. The case of block two-by-two GN matrices with scalar first diagonal block, which prove to be Dashnic–Zusmanovich matrices of the first type, is considered separately. The bounds obtained are applied to SDD matrices.
@article{ZNSL_2020_496_a10,
     author = {L. Yu. Kolotilina},
     title = {A block generalization of {Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--155},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a10/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - A block generalization of Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 138
EP  - 155
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a10/
LA  - ru
ID  - ZNSL_2020_496_a10
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T A block generalization of Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 138-155
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a10/
%G ru
%F ZNSL_2020_496_a10
L. Yu. Kolotilina. A block generalization of Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 138-155. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a10/

[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | Zbl

[2] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120

[4] L. Yu. Kolotilina, “Otsenki obratnykh dlya obobschennykh matrits Nekrasova”, Zap. nauchn. semin. POMI, 428, 2014, 182–195

[5] L. Yu. Kolotilina, “Otsenki obratnykh v norme $l_\infty$ dlya nekotorykh blochnykh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 145–158

[6] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165

[7] L. Yu. Kolotilina, “Matritsy nekrasovskogo tipa i otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 169–183

[8] L. Yu. Kolotilina, “Nekotorye novye klassy nevyrozhdennykh matrits i verkhnie otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 184–200

[9] R. Memke, P. A. Nekrasov, “Reshenie lineinoi sistemy uravnenii posredstvom' posledovatelnykh' priblizhenii”, Matem. sb., 16 (1892), 437–459

[10] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl

[11] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | MR | Zbl

[12] L. Cvetković, K. Doroslovac̆ki, “Max norm estimation for the inverse of block matrices”, Appl. Math. Comput., 242 (2014), 694–706 | MR | Zbl

[13] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | MR | Zbl

[14] L. Cvetković, V. Kostić, M. Nedović, “Generalizations of Nekrasov matrices and applications”, Open Math., 13 (2015), 96–105 | MR | Zbl

[15] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | MR | Zbl

[16] Kh. D. Ikramov, M. Yu. Ibragimov, “The Nekrasov property is hereditary for Gaussian elimination”, ZAMM, 77 (1997), 394–396 | DOI | MR | Zbl

[17] C. Q. Li, “Schur complement-based infinity norm bounds for the inverse of SDD matrices”, Bull. Malays. Math. Psci. Soc., 2018 | DOI | MR

[18] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR

[19] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[20] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[21] Y. Wang, L. Gao, “An improvement of the infinity norm bound for the inverse of $\{P_1,P_2\}$-Nekrasov matrices”, J. Ineq. Appl., 177 (2019) | MR