@article{ZNSL_2020_496_a10,
author = {L. Yu. Kolotilina},
title = {A block generalization of {Nekrasov} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--155},
year = {2020},
volume = {496},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a10/}
}
L. Yu. Kolotilina. A block generalization of Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 138-155. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a10/
[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latviiskii matematicheskii ezhegodnik, Riga, 1966, 385–390 | Zbl
[2] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | MR | Zbl
[3] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120
[4] L. Yu. Kolotilina, “Otsenki obratnykh dlya obobschennykh matrits Nekrasova”, Zap. nauchn. semin. POMI, 428, 2014, 182–195
[5] L. Yu. Kolotilina, “Otsenki obratnykh v norme $l_\infty$ dlya nekotorykh blochnykh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 145–158
[6] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165
[7] L. Yu. Kolotilina, “Matritsy nekrasovskogo tipa i otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 169–183
[8] L. Yu. Kolotilina, “Nekotorye novye klassy nevyrozhdennykh matrits i verkhnie otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 184–200
[9] R. Memke, P. A. Nekrasov, “Reshenie lineinoi sistemy uravnenii posredstvom' posledovatelnykh' priblizhenii”, Matem. sb., 16 (1892), 437–459
[10] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl
[11] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | MR | Zbl
[12] L. Cvetković, K. Doroslovac̆ki, “Max norm estimation for the inverse of block matrices”, Appl. Math. Comput., 242 (2014), 694–706 | MR | Zbl
[13] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | MR | Zbl
[14] L. Cvetković, V. Kostić, M. Nedović, “Generalizations of Nekrasov matrices and applications”, Open Math., 13 (2015), 96–105 | MR | Zbl
[15] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | MR | Zbl
[16] Kh. D. Ikramov, M. Yu. Ibragimov, “The Nekrasov property is hereditary for Gaussian elimination”, ZAMM, 77 (1997), 394–396 | DOI | MR | Zbl
[17] C. Q. Li, “Schur complement-based infinity norm bounds for the inverse of SDD matrices”, Bull. Malays. Math. Psci. Soc., 2018 | DOI | MR
[18] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR
[19] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl
[20] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl
[21] Y. Wang, L. Gao, “An improvement of the infinity norm bound for the inverse of $\{P_1,P_2\}$-Nekrasov matrices”, J. Ineq. Appl., 177 (2019) | MR