@article{ZNSL_2020_495_a2,
author = {Ya. I. Belopolskaya and E. I. Nemchenko},
title = {Chemotaxis stochastic model for two populations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--63},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a2/}
}
Ya. I. Belopolskaya; E. I. Nemchenko. Chemotaxis stochastic model for two populations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 37-63. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a2/
[1] T. Black, J. Lankeit, M. Mizukami, “On the weakly competitive case in a two-species chemotaxis model”, IMA J. Appl. Math., 81 (2016), 860–876 | DOI | MR | Zbl
[2] H. Qiu, S. Guo, “Global existence and stability in a two-species chemotaxis system”, Discrete Continuous Dynamical Systems, B, 24:4 (2019), 1569–1587 | DOI | MR | Zbl
[3] Ya. I. Belopolskaya, “Stokhasticheskie modeli protsessov khemotaksisa”, Zapiski nauchn. sem. POMI, 484, 2018, 7–27
[4] D. Talay, M. Tomašević, “A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The one-dimensional case”, Bernoulli Soc. Math. Stat. and Prob., 26:2 (2020), 1323–1353 | MR | Zbl
[5] Le Cavil, N. Oudjane, F. Russo, “Probabilistic representation of a class of for nonconseravtive nonlinear partial differential equations”, ALEA, Lat Am. J. Prob Math. Stat., 13 (2016), 1189–1233 | DOI | MR | Zbl
[6] N. Danford, Dzh. Shvarts, Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962