Chemotaxis stochastic model for two populations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 37-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a probabilistic representation of the Cauchy problem weak solution for a system of parabolic equations describing a chemotaxis process in a system of two interacting populations. We derive a stochastic system describing the Keller–Segel type chemotaxis process and the Lotka–Voltera type interatction between two populations and prove existence and uniqueness theorem for its solution. Finally, we show connections between solutions of the stochastic system and the Cauchy problem weak solution of the original PDE system.
@article{ZNSL_2020_495_a2,
     author = {Ya. I. Belopolskaya and E. I. Nemchenko},
     title = {Chemotaxis stochastic model for two populations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--63},
     publisher = {mathdoc},
     volume = {495},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a2/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
AU  - E. I. Nemchenko
TI  - Chemotaxis stochastic model for two populations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 37
EP  - 63
VL  - 495
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a2/
LA  - ru
ID  - ZNSL_2020_495_a2
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%A E. I. Nemchenko
%T Chemotaxis stochastic model for two populations
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 37-63
%V 495
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a2/
%G ru
%F ZNSL_2020_495_a2
Ya. I. Belopolskaya; E. I. Nemchenko. Chemotaxis stochastic model for two populations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 29, Tome 495 (2020), pp. 37-63. http://geodesic.mathdoc.fr/item/ZNSL_2020_495_a2/