@article{ZNSL_2020_492_a1,
author = {N. A. Vavilov and Z. Zhang},
title = {Relative centralisers of relative subgroups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {10--24},
year = {2020},
volume = {492},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a1/}
}
N. A. Vavilov; Z. Zhang. Relative centralisers of relative subgroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 492 (2020), pp. 10-24. http://geodesic.mathdoc.fr/item/ZNSL_2020_492_a1/
[1] A. S. Ananyevskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$. I. Levels and normalizers”, St. Petersburg Math. J., 23:5 (2015), 819–849 | DOI | MR
[2] A. Bak, “Non-abelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[3] A. Bak, R. Hazrat, N. A. Vavilov, “Localization-completion strikes again: relative $\text{\rm K}_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl
[4] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[5] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 2002, no. 22, 5–60 | MR
[6] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ ($n\ge 3$) and $\mathrm{Sp}_{2n}$ ($n\ge 2)$”, Publ. Math. Inst. Hautes Etudes Sci., 33 (1967), 59–137 | DOI | MR | Zbl
[7] Z. I. Borewicz, N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring, containing the group of diagonal matrices”, Proc. Steklov. Inst. Math., 148 (1980), 41–54 | MR
[8] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 165 (1985), 27–46 | MR
[9] J. L. Bueso, J. Gómez-Torrencillas, A. Verschoren, Algorithmic methods in non-commutative algebra: applications to finite groups, Springer Verlag, Berlin et al., 2013 | MR
[10] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Springer, Berlin et al., 1989 | MR
[11] R. Hazrat, “Dimension theory and non-stable $\mathrm{K}_1$ of quadratic module”, $\mathrm{K}$-Theory, 27 (2002), 293–327 | DOI | MR
[12] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci., 179:6 (2011), 662–678 | DOI | MR | Zbl
[13] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutators width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl
[14] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179:1 (2003), 99–116 | DOI | MR | Zbl
[15] R. Hazrat, N. Vavilov, “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[16] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl
[17] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl
[18] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl
[19] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl
[20] H. Marubayashi, “Primary ideal representations in non-commutative rings”, Math. J. Okayama Univ., 13:1 (1967), 1–7 | MR | Zbl
[21] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl
[22] A. W. Mason, “On non-normal subgroups of $\mathrm{GL}_n(A)$ which are normalized by elementary matrices”, Illinois J. Math., 28:1 (1984), 125–138 | DOI | MR | Zbl
[23] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl
[24] D. C. Murdoch, “Contribution to non-commutative ideal theory”, Canad. J. Math., 4:1 (1952), 43–57 | DOI | MR | Zbl
[25] O. Steinfeld, “On ideal-quotients and prime ideals”, Acta Math. Acad. Sci. Hungaricae, 4:3–4 (1953), 289–298 | DOI | MR | Zbl
[26] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm{K}$-Theory, Evanston, Lecture Notes in Math., 854, Springer, Berlin et al., 1980, 454–465 | MR
[27] N. Vavilov, “Unrelativised standard commutator formula”, Zapiski Nauchnyh Seminarov POMI, 470, 2018, 38–49 | MR
[28] N. Vavilov, “Commutators of congruence subgroups in the arithmetic case”, J. Math. Sci., 479 (2019), 5–22 | MR
[29] N. Vavilov, “Towards the reverse decomposition of unipotents. II. The relative case”, J. Math. Sci., 484 (2019), 5–23 | MR
[30] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm{A}_2$-proof of structure theorems for Chevalley groups of types $\mathrm{E}_6$ and $\mathrm{E}_7$”, St. Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl
[31] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR | Zbl
[32] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}_7$”, St. Petersburg Math. J., 27:6 (2016), 899–921 | DOI | MR | Zbl
[33] N. A. Vavilov, S. I. Nikolenko, “$\mathrm{A}_2$-proof of structure theorems for the Chevalley group of type $\mathrm{F}_4$”, St. Petersburg Math. J., 20:4 (2009), 527–551 | DOI | MR | Zbl
[34] N. A. Vavilov, V. A. Petrov, “Overgroups of elementary symplectic groups”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl
[35] N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{EO}(n,R)$”, St. Petersburg Math. J., 19:2 (2008), 167–195 | DOI | MR | Zbl
[36] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ., ser. 1, 41:1 (2008), 5–8 | MR | Zbl
[37] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula, revisited”, Vestnik St. Petersburg State Univ., ser. 1, 43:1 (2010), 12–17 | MR | Zbl
[38] N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups. II”, Proc. Edinburgh Math. Soc., 63 (2020), 497–511 | DOI | MR | Zbl
[39] N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary groups, revisited”, J. Math. Sci., 485 (2019), 58–71 | MR
[40] N. Vavilov, Z. Zhang, “Multiple commutators of elementary subgroups: end of the line”, Linear Algebra Applic., 599 (2020), 1–17 | DOI | MR | Zbl
[41] N. Vavilov, Z. Zhang, “Inclusions among commutators of elementary subgroups”, J. Algebra, 2019, 1–26 (to appear) | MR
[42] N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary subgroups in Chevalley groups”, Edinburg Math. Soc., 2020, 1–18 (to appear) | MR
[43] N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary unitary groups”, J. Algebra Number Theory, 2020, 1–40 (to appear) | MR