On the Erd{\H o}s--Hajnal problem in the case of $3$-graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 168-176

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m(n,r)$ denote the minimal number of edges in an $n$-uniform hypergraph which is not $r$-colorable. For the broad history of the problem see [10]. It is known [4] that for a fixed $n$ the sequence $$ \frac{m(n,r)}{r^n} $$ has a limit. The only trivial case is $n=2$ in which $m(2,r) = \binom{r+1}{2}$. In this note we focus on the case $n=3$. First, we compare the existing methods in this case and then improve the lower bound.
@article{ZNSL_2019_488_a7,
     author = {D. D. Cherkashin},
     title = {On the {Erd{\H} {o}s--Hajnal} problem in the case of $3$-graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--176},
     publisher = {mathdoc},
     volume = {488},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a7/}
}
TY  - JOUR
AU  - D. D. Cherkashin
TI  - On the Erd{\H o}s--Hajnal problem in the case of $3$-graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 168
EP  - 176
VL  - 488
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a7/
LA  - en
ID  - ZNSL_2019_488_a7
ER  - 
%0 Journal Article
%A D. D. Cherkashin
%T On the Erd{\H o}s--Hajnal problem in the case of $3$-graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 168-176
%V 488
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a7/
%G en
%F ZNSL_2019_488_a7
D. D. Cherkashin. On the Erd{\H o}s--Hajnal problem in the case of $3$-graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 168-176. http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a7/