@article{ZNSL_2019_488_a7,
author = {D. D. Cherkashin},
title = {On the {Erd\H{o}s{\textendash}Hajnal} problem in the case of $3$-graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--176},
year = {2019},
volume = {488},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a7/}
}
D. D. Cherkashin. On the Erdős–Hajnal problem in the case of $3$-graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XI, Tome 488 (2019), pp. 168-176. http://geodesic.mathdoc.fr/item/ZNSL_2019_488_a7/
[1] I. A. Akolzin, “On $3$-homogeneous hypergraphs colorings in $3$ colors”, Itogi Nauki i Tekhniki. Seriya Sovrem. Matem. i ee Prilozhen. Tenaticheskie Obzory, 150, 2018, 26–39 | MR
[2] I. Akolzin, D. Shabanov, “Colorings of hypergraphs with large number of colors”, Discrete Mathematics, 339:12 (2016), 3020–3031 | DOI | MR | Zbl
[3] N. Alon, “Hypergraphs with high chromatic number”, Graphs and Combinatorics, 1:1 (1985), 387–389 | DOI | MR | Zbl
[4] D. Cherkashin, F. Petrov, Regular behavior of the maximal hypergraph chromatic number, 2018, arXiv: 1808.01482
[5] D. Cherkashin, J. Kozik, “A note on random greedy coloring of uniform hypergraphs”, Random Structures Algorithms, 47:3 (2015), 407–413 | DOI | MR | Zbl
[6] P. Erdős, “Some old and new problems in various branches of combinatories”, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXIII, Utilitas Mathematica, Winnipeg, 1979, 19–37 | MR
[7] P. Erdős, A. Hajnal, “On a property of families of sets”, Acta Mathematica Hungarica, 12:1–2 (1961), 87–123 | MR | Zbl
[8] N. Pippenger, M. Ch. Golumbic, “The inducibility of graphs”, J. Combinatorial Theory, Series B, 19:3 (1975), 189–203 | DOI | MR | Zbl
[9] A. Pluhár, “Greedy colorings of uniform hypergraphs”, Random Structures Algorithms, 35:2 (2009), 216–221 | DOI | MR | Zbl
[10] A. M. Raigorodskii, D. A. Shabanov, “The Erdős–Hajnal problem of hypergraph colouring, its generalizations, and related problems”, Russian Mathematical Surveys, 66:5 (2011), 933–1002 | DOI | MR | Zbl
[11] A. Sidorenko, “What we know and what we do not know about Turán numbers”, Graphs and Combinatorics, 11:2 (1995), 179–199 | DOI | MR | Zbl