On a limit theorem related to a Cauchy problem solution for the Schr\"odinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 254-264
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a limit theorem on convergence of mathematical expectations of functionals of sums of independent random variables to a Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$ in the right hand side.
@article{ZNSL_2019_486_a15,
author = {M. V. Platonova and S. V. Tsykin},
title = {On a limit theorem related to a {Cauchy} problem solution for the {Schr\"odinger} equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {254--264},
publisher = {mathdoc},
volume = {486},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a15/}
}
TY - JOUR
AU - M. V. Platonova
AU - S. V. Tsykin
TI - On a limit theorem related to a Cauchy problem solution for the Schr\"odinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2019
SP - 254
EP - 264
VL - 486
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a15/
LA - ru
ID - ZNSL_2019_486_a15
ER -
%0 Journal Article
%A M. V. Platonova
%A S. V. Tsykin
%T On a limit theorem related to a Cauchy problem solution for the Schr\"odinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 254-264
%V 486
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a15/
%G ru
%F ZNSL_2019_486_a15
M. V. Platonova; S. V. Tsykin. On a limit theorem related to a Cauchy problem solution for the Schr\"odinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 254-264. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a15/