Limit theorems for areas and perimeters of random inscribed and circumscribed polygons
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 200-213
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the limiting distributions for the maximal area of random convex inscribed polygons and for minimal area of random convex circumscribed polygons whose vertices are distributed on the circumference with almost arbitrary continuous density. These distributions belong to the Weibull family. From this we deduce new limit theorems in the case when the vertices of polygons have the uniform distribution on the ellipse. Some similar theorems are formulated also for perimeters of inscribed and circumscribed polygons.
@article{ZNSL_2019_486_a11,
author = {Ya. Yu. Nikitin and T. A. Polevaya},
title = {Limit theorems for areas and perimeters of random inscribed and circumscribed polygons},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {200--213},
publisher = {mathdoc},
volume = {486},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/}
}
TY - JOUR AU - Ya. Yu. Nikitin AU - T. A. Polevaya TI - Limit theorems for areas and perimeters of random inscribed and circumscribed polygons JO - Zapiski Nauchnykh Seminarov POMI PY - 2019 SP - 200 EP - 213 VL - 486 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/ LA - ru ID - ZNSL_2019_486_a11 ER -
Ya. Yu. Nikitin; T. A. Polevaya. Limit theorems for areas and perimeters of random inscribed and circumscribed polygons. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 200-213. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/