Limit theorems for areas and perimeters of random inscribed and circumscribed polygons
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 200-213

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the limiting distributions for the maximal area of random convex inscribed polygons and for minimal area of random convex circumscribed polygons whose vertices are distributed on the circumference with almost arbitrary continuous density. These distributions belong to the Weibull family. From this we deduce new limit theorems in the case when the vertices of polygons have the uniform distribution on the ellipse. Some similar theorems are formulated also for perimeters of inscribed and circumscribed polygons.
@article{ZNSL_2019_486_a11,
     author = {Ya. Yu. Nikitin and T. A. Polevaya},
     title = {Limit theorems for areas and perimeters of random inscribed and circumscribed polygons},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--213},
     publisher = {mathdoc},
     volume = {486},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
AU  - T. A. Polevaya
TI  - Limit theorems for areas and perimeters of random inscribed and circumscribed polygons
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 200
EP  - 213
VL  - 486
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/
LA  - ru
ID  - ZNSL_2019_486_a11
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%A T. A. Polevaya
%T Limit theorems for areas and perimeters of random inscribed and circumscribed polygons
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 200-213
%V 486
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/
%G ru
%F ZNSL_2019_486_a11
Ya. Yu. Nikitin; T. A. Polevaya. Limit theorems for areas and perimeters of random inscribed and circumscribed polygons. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 28, Tome 486 (2019), pp. 200-213. http://geodesic.mathdoc.fr/item/ZNSL_2019_486_a11/