@article{ZNSL_2019_485_a9,
author = {I. Panin},
title = {A short exact sequence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {176--186},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a9/}
}
I. Panin. A short exact sequence. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 176-186. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a9/
[1] V. Chernousov, P. Gille, A. Pianzola, “A classification of torsors over Laurent polynomial rings”, Comment. Math. Helv., 92 (2017), 37–55 | DOI | MR | Zbl
[2] J.-L. Colliot-Thélène, M. Ojanguren, “Espaces Principaux Homogènes Localement Triviaux”, Publ. Math. IHÉS, 75:2 (1992), 97–122 | DOI | MR | Zbl
[3] J.-L. Colliot-Thélène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: Applications”, J. Algebra, 106 (1987), 148–205 | DOI | MR | Zbl
[4] M. Demazure, A. Grothendieck, Schémas en groupes, Lect. Notes Math., 151–153, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR
[5] M. Demazure, A. Grothendieck, Structure des schémas en groupes réductifs, Lect. Notes Math., 153 | MR
[6] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[7] R. Fedorov, I. Panin, “A proof of Grothendieck–Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field”, Publ. Math. Inst. Hautes Etudes Sci, 122 (2015), 169–193, arXiv: 1211.2678v2 | DOI | MR | Zbl
[8] A. Grothendieck, “Torsion homologique et section rationnalles”, Anneaux de Chow et applications, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958 | MR
[9] A. Grothendieck, “Technique de descente et theoremes d'existence en geometrie algebrique: I. Generalites. Descente par morphismes delement plats”, Seminaire Bourbaki, 5, no. 190, Soc. Math. France, Paris, 1995, 299–327 | MR
[10] A. Grothendieck, “Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents. Première partie”, Publ. Math. IHÉS, 11 (1961), 5–167 | DOI | MR
[11] A. Grothendieck, “Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas. Seconde partie”, Publ. Math. IHÉS, 24 (1965), 5–231 | DOI | MR
[12] Y. Nisnevich, “Rationally Trivial Principal Homogeneous Spaces and Arithmetic of Reductive Group Schemes Over Dedekind Rings”, C. R. Acad. Sci. Paris, Série I, 299:1 (1984), 5–8 | MR | Zbl
[13] Ning Guo, The Grotendieck–Serre conjecture over semi-local dedekind rings, 1902, arXiv: 1902.02315v2
[14] I. Panin, “On Grothendieck–Serres conjecture concerning principal G-bundles over reductive group schemes: II”, Izv. RAN Ser. Mat., 80:4 (2016), 131–162 | DOI | MR | Zbl
[15] I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proc. Intern. Congress of Math. (Rio de Janeiro, 2018), v. 1, 201–222 | MR
[16] I. Panin, “Nice triples and Grothendieck—Serre's conjecture concerning principal $G$-bundles over reductive group schemes”, Duke Math. J., 168:2 (2019) | DOI | MR | Zbl
[17] I. Panin, Two purity theorems and Grothendieck-Serre's conjecture concerning principal $G$-bundles over regular semi-local rings, arXiv: 1707.01763 | MR
[18] I. Panin, Proof of Grothendieck–Serre conjecture on principal $G$-bundles over semi-local regular domains containing a finite field, arXiv: 1707.01767
[19] I. A. Panin, A. K. Stavrova, “On the Grothendieck-Serre conjecture concerning principal G-bundles over semi-local Dedekind domains”, Zap. Nauchn. Semin. POMI, 443, 2016, 133–146 | MR
[20] J.-P. Serre, “Espaces fibrés algébriques”, Anneaux de Chow et applications, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958 | MR | Zbl
[21] A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl