@article{ZNSL_2019_485_a8,
author = {Yu. Palij},
title = {Parametrization of the conjugacy class of the special linear group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {155--175},
year = {2019},
volume = {485},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a8/}
}
Yu. Palij. Parametrization of the conjugacy class of the special linear group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 155-175. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a8/
[1] P. Molino, Riemannian Foliations, Birkäuser, Boston, 1988 | MR | Zbl
[2] T. J. Courant, “Dirac manifolds”, Transactions AMS, 319 (1990), 631–661 | DOI | MR | Zbl
[3] A. Alekseev, T. Strobl, “Current algebras and differential geometry”, JHEP, 03 (2005), 035 | DOI | MR
[4] M. V. Babich, “Birational Darboux Coordinates on (Co)Adjoint Orbits of $ GL(N,\mathbb{C}) $”, Funktsional. Anal. Prilozhen., 50:1 (2016), 20–37 | DOI | MR | Zbl
[5] T. A. Springer, Linear algebraic Groups, 2-nd ed., Birkhäser, Boston, 1998 | MR | Zbl
[6] Peter M. Michor, Topics in differential geometry, AMS, 2008 | MR | Zbl
[7] J. A. Schouten, Ricci Calculus, Springer-Verlag, Berlin–Heidelberg, 1954 | MR | Zbl
[8] N. Kh. Ibragimov, Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya. Klassicheskie i novye metody. Nelineinye matematicheskie modeli. Simmetriya i printsipy invariantnosti, izdatelstvo Nizhnegorodskogo universiteta im. N.I. Lobachevskogo, Nizhnii Novgorod, 2007
[9] Peter J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1998 | MR
[10] Yu. Palii, “Sloenie prostranstva $sl*(n,R)$ na koprisoedinennye orbity”, Zap. nauchn. semin. POMI, 468, 2018, 267–280
[11] A. Baker, Matrix groups. Introduction to Lie theory, Springer-Verlag London Limited, 2002 | MR | Zbl
[12] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag N.-Y., Inc., 1978 | MR | Zbl
[13] A. A. Kirillov, Lectures on the orbit method, American Mathematical Society, Providence, Rhode Island, 2004 | MR | Zbl