Voir la notice du chapitre de livre
@article{ZNSL_2019_485_a1,
author = {S. Adlaj},
title = {Multiplication and division on elliptic curves, torsion points and roots of modular equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {24--57},
year = {2019},
volume = {485},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a1/}
}
S. Adlaj. Multiplication and division on elliptic curves, torsion points and roots of modular equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 485 (2019), pp. 24-57. http://geodesic.mathdoc.fr/item/ZNSL_2019_485_a1/
[1] S. Adlaj, “Galois elliptic function and its symmetries”, $12^{\rm th}$ International Conference on Polynomial Computer Algebra, ed. Vassiliev N.N., St. Petersburg department of Steklov Institute of Mathematics, St. Petersburg, 2019, 11–17
[2] S. Adlaj, “On the second memoir of Évariste Galois' last letter”, Computer Tools in Science and Education, 4 (2018), 5–20 | DOI
[3] S. Adlaj, Thread equilibrium in a linear parallel force field, LAP LAMBERT, Saarbrucken, 2018 (in Russian)
[4] S. Adlaj, “An analytic unifying formula of oscillatory and rotary motion of a simple pendulum (dedicated to $70^{\rm th}$ birthday of Jan Jerzy Slawianowski”, Proc. Int. Conf. “Geometry, Integrability, Mechanics and Quantization”, eds. Mladenov I., Ludu A., Yoshioka A., Avangard Prima, Sofia, Bulgaria, 2015, 160–171 | MR
[5] S. Adlaj, Torsion points on elliptic curves and modular polynomial symmetries, Presented at the joined MSU-CCRAS Computer Algebra Seminar (September 24, 2014) http://www.ccas.ru/sabramov/seminar/lib/exe/fetch.php?media=adlaj140924.pdf
[6] S. Adlaj, “Modular Polynomial Symmetries”, $7^{\rm th}$ International Conference on Polynomial Computer Algebra, ed. Vassiliev N.N., St. Petersburg department of Steklov Institute of Mathematics, St. Petersburg, 2014, 4–5
[7] S. Adlaj, “Elliptic and coelliptic polynomials”, $17^{\rm th}$ Workshop on Computer Algebra (Dubna, Russia, May 21-22, 2014) http://compalg.jinr.ru/Dubna2014/abstracts2014_files/1159.pdf
[8] S. Adlaj, “Mechanical interpretation of negative and imaginary tension of a tether in a linear parallel force field”, Selected Works of the International Scientific Conference on Mechanics “Sixth Polyakhov Readings”, Saint-Petersburg State University, Saint-Petersburg, 2012, 13–18
[9] S. Adlaj, “Iterative algorithm for computing an elliptic integral”, Issues on motion stability and stabilization, 2011, 104–110 (in Russian)
[10] S. Adlaj, Eighth lattice points, arXiv: 1110.1743
[11] E. Betti, “Sopra la risolubilità per radicali delle equazioni algebriche irriduttibili di grado primo”, Dagli Annali di Scienze matimatiche e fisiche (Roma, 1851), v. II, 5–19
[12] E. Betti, “Un teorema sulla risoluzione analitica delle equazioni algebriche”, Dagli Annali di Scienze matimatiche e fisiche (Roma, 1854), v. V, 10–17
[13] D. Cox, “The arithmetic-geometric mean of Gauss”, Mathématique, 30 (1984), 275–330 | MR | Zbl
[14] É. Galois, “Lettre de Galois G M. Auguste Chevalier”, Journal de Mathématiques Pures et Appliquées, XI (1846), 408–415
[15] C. Hermite, “Sur la résolution de l'équation du cinquième degré”, Comptes Rendus de l'Académie des Sciences, XLVI:I (1858), 508–515
[16] S. D. Meshveliani, “Computer proof for a “mysterious” equality for quartic roots”, $17^{\rm th}$ Workshop on Computer Algebra (Dubna, Russia, May 21-22, 2014) http://compalg.jinr.ru/Dubna2014/abstracts2014_files/1199.pdf
[17] J-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973 | MR | Zbl
[18] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Princeton, 1981 | MR
[19] L. A. Sohnke, “Aequationes modulares pro transformatione Functionum Ellipticarum”, Journal für die reine und angewandte Mathematik, 16 (1837), 97–130 | MR