Smooth affine model for the framed correspondences spectrum
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 59-71
Voir la notice de l'article provenant de la source Math-Net.Ru
The framed correspondences $T$-spectrum of a smooth affine scheme is a $T$-spectrum of Nisnevich sheaves. We construct the motivically equivalent model of the $T$-spectrum representable in the category of pairs of smooth affine ind-schemes in the case of a base scheme of a finite Krull dimension. In other words, the motivic spaces of $(\mathbb{P},\infty)^{\wedge \infty}$-loops in the relative motivic sphere $\mathbb{A}_Y^{\infty+l}/(\mathbb{A}_Y^{\infty+l}-0)$ are represented in the category of pairs of smooth affine ind-schemes. The construction in not functorial on the category of smooth affine schemes, but it is so on the category of smooth affine framed schemes, that is defined in the text.
@article{ZNSL_2019_484_a4,
author = {A. E. Druzhinin},
title = {Smooth affine model for the framed correspondences spectrum},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {59--71},
publisher = {mathdoc},
volume = {484},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a4/}
}
A. E. Druzhinin. Smooth affine model for the framed correspondences spectrum. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 59-71. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a4/