A motivic Segal-type theorem for pairs (announcement)
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 165-184
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

V. Voevodsky has set the foundation of the machinery of loop spaces of motivic spaces to provide a more computation-friendly construction of the stable motivic category $SH(k)$. G. Garkusha and I. Panin have made that vision a reality, using joint works with A. Ananievsky, A. Neshitov and A. Druzhinin. In particular, G. Garkusha and I. Panin have proved that for any infinite perfect field $k$ and any $k$-smooth scheme $X$ the canonical morphism of motivic spaces $C_*Fr(X)\to \Omega^{\infty}_{\mathbb{P}^1} \Sigma^{\infty}_{\mathbb{P}^1} (X_+)$ is Nisnevich-locally a group-completion. The present work addresses a generalisation of that theorem to the case of general open pairs of smooth schemes $(X,U),$ where $X$ is a $k$-smooth scheme, $U$ is its open subscheme intersecting each component of $X$ in a nonempty subscheme. We propose that in this case the motivic space $C_*Fr((X,U))$ is Nisnevich-locally connected and the canonical morphism of motivic spaces $C_*Fr((X,U))\to \Omega^{\infty}_{\mathbb{P}^1} \Sigma^{\infty}_{\mathbb{P}^1} (X/U)$ is Nisnevich-locally a homotopy equivalence of simplicial sets. Moreover, we state that if the codimension of $S=X-U$ in each component of $X$ is greater than $r \geq 0,$ then the simplicial sheaf $C_*Fr((X,U))$ is locally $r$-connected. Some principal steps of the proof of these statements are provided in the present paper, but other important technical lemmas are given without proof. Those proofs will be published later.
@article{ZNSL_2019_484_a11,
     author = {A. Tsybyshev},
     title = {A motivic {Segal-type} theorem for pairs (announcement)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--184},
     year = {2019},
     volume = {484},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a11/}
}
TY  - JOUR
AU  - A. Tsybyshev
TI  - A motivic Segal-type theorem for pairs (announcement)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 165
EP  - 184
VL  - 484
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a11/
LA  - ru
ID  - ZNSL_2019_484_a11
ER  - 
%0 Journal Article
%A A. Tsybyshev
%T A motivic Segal-type theorem for pairs (announcement)
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 165-184
%V 484
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a11/
%G ru
%F ZNSL_2019_484_a11
A. Tsybyshev. A motivic Segal-type theorem for pairs (announcement). Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 165-184. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a11/

[1] G. Garkusha, I. Panin, Framed motives of algebraic varieties (after V. Voevodsky), 2014, arXiv: 1409.4372 [math.KT]

[2] G. Garkusha, A. Neshitov, I. Panin, Framed motives of relative motivic spheres, 2016, arXiv: 1604.02732 [math.KT]

[3] A. Ananyevskiy, G. Garkusha, I. Panin, Cancellation theorem for framed motives of algebraic varieties, 2016, arXiv: 1601.06642 [math.KT]

[4] A. Druzhinin, I. Panin, Surjectivity of the étale excision map for homotopy invariant framed presheaves, 2018, arXiv: 1808.07765 [math.KT]

[5] J. F. Jardine, “Simplicial presheaves”, J. Pure Appl. Algebra, 47 (1987), 35–87 | DOI | MR | Zbl

[6] S. Schwede, An untitled book project about symmetric spectra, (version April 2012) www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf

[7] G. Garkusha, I. Panin, Homotopy invariant presheaves with framed transfers, 2015, arXiv: 1504.00884 [math.AG]

[8] A. Suslin, V. Voevodsky, Bloch–Kato Conjecture and Motivic Cohomology with Finite Coefficients, The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series (Series C: Mathematical and Physical Sciences), 548, eds. Gordon B.B., Lewis J.D., Muller-Stach S., Saito S., Yui N., Springer, Dordrecht | MR

[9] G. Segal, “Categories and cohomology theories”, Topology, 13 (1974), 293–312 | DOI | MR | Zbl

[10] F. Morel, V. Voevodsky, “$\mathbb{A}^1$-homotopy theory of schemes”, Publ. Math. IHES, 90, 1999, 45–143 | DOI | MR | Zbl

[11] J. Milne, Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl

[12] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs Volume, 2, 2006 | MR | Zbl

[13] V. Voevodsky, Notes on framed correspondences, unpublished, 2001

[14] V. Voevodsky, “$A^1$-homotopy theory”, Proc. of the Int. Congress of Mathematicians (Berlin, 1998), v. I, 1998 | MR | Zbl

[15] A. A. Mingazov, Some remarks on relative framed motives, 2019, arXiv: 1911.04860