Voir la notice du chapitre de livre
@article{ZNSL_2019_484_a11,
author = {A. Tsybyshev},
title = {A motivic {Segal-type} theorem for pairs (announcement)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {165--184},
year = {2019},
volume = {484},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a11/}
}
A. Tsybyshev. A motivic Segal-type theorem for pairs (announcement). Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 35, Tome 484 (2019), pp. 165-184. http://geodesic.mathdoc.fr/item/ZNSL_2019_484_a11/
[1] G. Garkusha, I. Panin, Framed motives of algebraic varieties (after V. Voevodsky), 2014, arXiv: 1409.4372 [math.KT]
[2] G. Garkusha, A. Neshitov, I. Panin, Framed motives of relative motivic spheres, 2016, arXiv: 1604.02732 [math.KT]
[3] A. Ananyevskiy, G. Garkusha, I. Panin, Cancellation theorem for framed motives of algebraic varieties, 2016, arXiv: 1601.06642 [math.KT]
[4] A. Druzhinin, I. Panin, Surjectivity of the étale excision map for homotopy invariant framed presheaves, 2018, arXiv: 1808.07765 [math.KT]
[5] J. F. Jardine, “Simplicial presheaves”, J. Pure Appl. Algebra, 47 (1987), 35–87 | DOI | MR | Zbl
[6] S. Schwede, An untitled book project about symmetric spectra, (version April 2012) www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf
[7] G. Garkusha, I. Panin, Homotopy invariant presheaves with framed transfers, 2015, arXiv: 1504.00884 [math.AG]
[8] A. Suslin, V. Voevodsky, Bloch–Kato Conjecture and Motivic Cohomology with Finite Coefficients, The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series (Series C: Mathematical and Physical Sciences), 548, eds. Gordon B.B., Lewis J.D., Muller-Stach S., Saito S., Yui N., Springer, Dordrecht | MR
[9] G. Segal, “Categories and cohomology theories”, Topology, 13 (1974), 293–312 | DOI | MR | Zbl
[10] F. Morel, V. Voevodsky, “$\mathbb{A}^1$-homotopy theory of schemes”, Publ. Math. IHES, 90, 1999, 45–143 | DOI | MR | Zbl
[11] J. Milne, Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl
[12] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs Volume, 2, 2006 | MR | Zbl
[13] V. Voevodsky, Notes on framed correspondences, unpublished, 2001
[14] V. Voevodsky, “$A^1$-homotopy theory”, Proc. of the Int. Congress of Mathematicians (Berlin, 1998), v. I, 1998 | MR | Zbl
[15] A. A. Mingazov, Some remarks on relative framed motives, 2019, arXiv: 1911.04860