The absolute of the comb graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the 1970s R. Stanley introduced the comb graph $\mathbb{E}$ whose vertices are indexed by the set of compositions of positive integers and branching reflects the ordering of compositions by inclusion. A. Vershik defined the absolute of a $\mathbb{Z}_+$-graded graph as the set of all ergodic probability central measures on it. We show that the absolute of $\mathbb{E}$ is naturally parametrized by the space $\Omega = \{(\alpha_1, \alpha_2, \dots ) : \alpha_i \ge 0$, $\sum_i \alpha_i \le 1\}$.
@article{ZNSL_2019_481_a8,
     author = {P. P. Nikitin},
     title = {The absolute of the comb graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--135},
     year = {2019},
     volume = {481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/}
}
TY  - JOUR
AU  - P. P. Nikitin
TI  - The absolute of the comb graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 125
EP  - 135
VL  - 481
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/
LA  - en
ID  - ZNSL_2019_481_a8
ER  - 
%0 Journal Article
%A P. P. Nikitin
%T The absolute of the comb graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 125-135
%V 481
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/
%G en
%F ZNSL_2019_481_a8
P. P. Nikitin. The absolute of the comb graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/

[1] J. L. Doob, “Discrete potential theory and boundaries”, J. Math. Mech., 8 (1959), 433–458 | MR | Zbl

[2] A. V. Gnedin, “The representation of composition structures”, Ann. Probab., 25:3 (1997), 1437–1450 | DOI | MR | Zbl

[3] M. V. Karev, P. P. Nikitin, “The boundary of the refined Kingman graph”, Zap. Nauchn. Semin. POMI, 468, 2018, 58–74 | MR

[4] S. V. Kerov, “Combinatorial examples in the theory of AF-algebras”, Zap. Nauchn. Semin. LOMI, 172, 1989, 55–67 | MR

[5] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 4 (1998), 173–199 | DOI | MR | Zbl

[6] S. Kerov, A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions with the elements of the $K_0$-functor theory of AF-algebras”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, 1990, 36–114 | MR

[7] J. F. C. Kingman, “Random partitions in population genetics”, Proc. Roy. Soc. London A, 361 (1978), 1–20 | DOI | MR | Zbl

[8] A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math., 4:4 (2018), 1476–1490 | DOI | MR | Zbl

[9] R. P. Stanley, Ordered Structures and Partitions, Amer. Math. Soc., 1972 | MR | Zbl

[10] R. P. Stanley, “The Fibonacci lattice”, Fib. Quart., 13 (1975), 215–232 | MR | Zbl

[11] A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, Zap. Nauchn. Semin. POMI, 432, 2015, 83–104 | MR | Zbl

[12] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271 | DOI | MR | Zbl

[13] A. M. Vershik, “Three theorems on the uniqueness of the Plancherel measure from different viewpoints”, Trudy Mat. Inst. Steklov, 305, 2019 (to appear) | MR | Zbl