The absolute of the comb graph
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the 1970s R. Stanley introduced the comb graph $\mathbb{E}$ whose vertices are indexed by the set of compositions of positive integers and branching reflects the ordering of compositions by inclusion. A. Vershik defined the absolute of a $\mathbb{Z}_+$-graded graph as the set of all ergodic probability central measures on it. We show that the absolute of $\mathbb{E}$ is naturally parametrized by the space $\Omega = \{(\alpha_1, \alpha_2, \dots ) : \alpha_i \ge 0$, $\sum_i \alpha_i \le 1\}$.
			
            
            
            
          
        
      @article{ZNSL_2019_481_a8,
     author = {P. P. Nikitin},
     title = {The absolute of the comb graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {481},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/}
}
                      
                      
                    P. P. Nikitin. The absolute of the comb graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/