The absolute of the comb graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135

Voir la notice de l'article provenant de la source Math-Net.Ru

In the 1970s R. Stanley introduced the comb graph $\mathbb{E}$ whose vertices are indexed by the set of compositions of positive integers and branching reflects the ordering of compositions by inclusion. A. Vershik defined the absolute of a $\mathbb{Z}_+$-graded graph as the set of all ergodic probability central measures on it. We show that the absolute of $\mathbb{E}$ is naturally parametrized by the space $\Omega = \{(\alpha_1, \alpha_2, \dots ) : \alpha_i \ge 0$, $\sum_i \alpha_i \le 1\}$.
@article{ZNSL_2019_481_a8,
     author = {P. P. Nikitin},
     title = {The absolute of the comb graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {481},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/}
}
TY  - JOUR
AU  - P. P. Nikitin
TI  - The absolute of the comb graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 125
EP  - 135
VL  - 481
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/
LA  - en
ID  - ZNSL_2019_481_a8
ER  - 
%0 Journal Article
%A P. P. Nikitin
%T The absolute of the comb graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 125-135
%V 481
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/
%G en
%F ZNSL_2019_481_a8
P. P. Nikitin. The absolute of the comb graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/