@article{ZNSL_2019_481_a8,
author = {P. P. Nikitin},
title = {The absolute of the comb graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--135},
year = {2019},
volume = {481},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/}
}
P. P. Nikitin. The absolute of the comb graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Tome 481 (2019), pp. 125-135. http://geodesic.mathdoc.fr/item/ZNSL_2019_481_a8/
[1] J. L. Doob, “Discrete potential theory and boundaries”, J. Math. Mech., 8 (1959), 433–458 | MR | Zbl
[2] A. V. Gnedin, “The representation of composition structures”, Ann. Probab., 25:3 (1997), 1437–1450 | DOI | MR | Zbl
[3] M. V. Karev, P. P. Nikitin, “The boundary of the refined Kingman graph”, Zap. Nauchn. Semin. POMI, 468, 2018, 58–74 | MR
[4] S. V. Kerov, “Combinatorial examples in the theory of AF-algebras”, Zap. Nauchn. Semin. LOMI, 172, 1989, 55–67 | MR
[5] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 4 (1998), 173–199 | DOI | MR | Zbl
[6] S. Kerov, A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions with the elements of the $K_0$-functor theory of AF-algebras”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, 1990, 36–114 | MR
[7] J. F. C. Kingman, “Random partitions in population genetics”, Proc. Roy. Soc. London A, 361 (1978), 1–20 | DOI | MR | Zbl
[8] A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math., 4:4 (2018), 1476–1490 | DOI | MR | Zbl
[9] R. P. Stanley, Ordered Structures and Partitions, Amer. Math. Soc., 1972 | MR | Zbl
[10] R. P. Stanley, “The Fibonacci lattice”, Fib. Quart., 13 (1975), 215–232 | MR | Zbl
[11] A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, Zap. Nauchn. Semin. POMI, 432, 2015, 83–104 | MR | Zbl
[12] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271 | DOI | MR | Zbl
[13] A. M. Vershik, “Three theorems on the uniqueness of the Plancherel measure from different viewpoints”, Trudy Mat. Inst. Steklov, 305, 2019 (to appear) | MR | Zbl