Dual Diophantine systems of linear inequalities
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 23-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A modified version of the $\mathcal{L}$-algorithm is proposed. Using this algorithm anyone can build an infinite sequence of integer solutions for dual systems of linear inequalities $\mathcal{S}$ and $\mathcal{S}^*$ of $d+1$ variables, consisting respectively of $k^{\perp}$ and $k^{* \perp} $ inequalities, where $k^{\perp} + k^{* \perp} = d + 1$. Solutions are obtained by using two recurrence relations of the order $d+1$. Approximations in the systems of inequalities $\mathcal{S}$ and $ \mathcal {S}^* $ is carried out with Diophantine exponents $ \frac {d + 1-k^{\perp}} { k^{\perp}} - \varrho $ and $\frac{d + 1-k ^{*\perp}} { k^{*\perp}} - \varrho $, where the deviation $ \varrho> 0 $ can be made arbitrarily small due to a suitable choice of the recurrence relations. The $ \mathcal{L}$-algorithm is based on a method of localizing units in algebraic number fields.
@article{ZNSL_2019_479_a1,
     author = {V. G. Zhuravlev},
     title = {Dual {Diophantine} systems of linear inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--51},
     year = {2019},
     volume = {479},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Dual Diophantine systems of linear inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2019
SP  - 23
EP  - 51
VL  - 479
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a1/
LA  - ru
ID  - ZNSL_2019_479_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Dual Diophantine systems of linear inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2019
%P 23-51
%V 479
%U http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a1/
%G ru
%F ZNSL_2019_479_a1
V. G. Zhuravlev. Dual Diophantine systems of linear inequalities. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 23-51. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a1/

[1] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 283–303

[2] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983

[3] V. G. Zhuravlev, “$\mathcal{L}$-algoritm approksimatsii diofantovykh sistem lineinykh form”, Algebra i analiz, 2018, 1–22 (to appear)

[4] V. G. Zhuravlev, “Lokalizovannye matritsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Analiticheskaya teoriya chisel i teoriya funktsii. 33, Zap. nauchn. semin. POMI, 458, 2017, 104–134

[5] V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Algebra i analiz, 2018, 1–17 (to appear) | Zbl

[6] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Mathematics of computation, 25:113 (1971), 163–180 | DOI | MR | Zbl

[7] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Mathematics of computation, 26:120 (1972), 977–993 | DOI | MR | Zbl

[8] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd. trete, Nauka, M., 1985 | MR

[9] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195