@article{ZNSL_2019_479_a1,
author = {V. G. Zhuravlev},
title = {Dual {Diophantine} systems of linear inequalities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {23--51},
year = {2019},
volume = {479},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a1/}
}
V. G. Zhuravlev. Dual Diophantine systems of linear inequalities. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 2, Tome 479 (2019), pp. 23-51. http://geodesic.mathdoc.fr/item/ZNSL_2019_479_a1/
[1] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 283–303
[2] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983
[3] V. G. Zhuravlev, “$\mathcal{L}$-algoritm approksimatsii diofantovykh sistem lineinykh form”, Algebra i analiz, 2018, 1–22 (to appear)
[4] V. G. Zhuravlev, “Lokalizovannye matritsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Analiticheskaya teoriya chisel i teoriya funktsii. 33, Zap. nauchn. semin. POMI, 458, 2017, 104–134
[5] V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Algebra i analiz, 2018, 1–17 (to appear) | Zbl
[6] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Mathematics of computation, 25:113 (1971), 163–180 | DOI | MR | Zbl
[7] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Mathematics of computation, 26:120 (1972), 977–993 | DOI | MR | Zbl
[8] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, izd. trete, Nauka, M., 1985 | MR
[9] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195