The semimeander crossing number of knots and related invariants
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 20-33

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimum number of crossings among all of the diagrams of a knot $K$ composed of at most $k$ smooth simple arcs is called the $k$-arc crossing number of $K$. This number is denoted by $\mathrm{cr}_k(K)$. The $2$-arc crossing number is also called the semimeander crossing number. The article studies connections of the $k$-arc crossing numbers with the classical crossing number $\mathrm{cr}(K)$ of $K$. It is proved that for each knot $K$, the following inequalities are fulfilled: $\mathrm{cr}_2(K) \leqslant \sqrt[4]{6}^{\mathrm{cr}(K)}$ and $\mathrm{cr}_k(K) \leqslant \mathrm{cr}_{k+1}(K) + \frac{(\mathrm{cr}_{k+1}(K))^2} {2(k+1)^2}$.
@article{ZNSL_2018_476_a1,
     author = {Yu. S. Belousov},
     title = {The semimeander crossing number of knots and related invariants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--33},
     publisher = {mathdoc},
     volume = {476},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/}
}
TY  - JOUR
AU  - Yu. S. Belousov
TI  - The semimeander crossing number of knots and related invariants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 20
EP  - 33
VL  - 476
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/
LA  - ru
ID  - ZNSL_2018_476_a1
ER  - 
%0 Journal Article
%A Yu. S. Belousov
%T The semimeander crossing number of knots and related invariants
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 20-33
%V 476
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/
%G ru
%F ZNSL_2018_476_a1
Yu. S. Belousov. The semimeander crossing number of knots and related invariants. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 20-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/