The semimeander crossing number of knots and related invariants
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 20-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The minimum number of crossings among all of the diagrams of a knot $K$ composed of at most $k$ smooth simple arcs is called the $k$-arc crossing number of $K$. This number is denoted by $\mathrm{cr}_k(K)$. The $2$-arc crossing number is also called the semimeander crossing number. The article studies connections of the $k$-arc crossing numbers with the classical crossing number $\mathrm{cr}(K)$ of $K$. It is proved that for each knot $K$, the following inequalities are fulfilled: $\mathrm{cr}_2(K) \leqslant \sqrt[4]{6}^{\mathrm{cr}(K)}$ and $\mathrm{cr}_k(K) \leqslant \mathrm{cr}_{k+1}(K) + \frac{(\mathrm{cr}_{k+1}(K))^2} {2(k+1)^2}$.
@article{ZNSL_2018_476_a1,
     author = {Yu. S. Belousov},
     title = {The semimeander crossing number of knots and related invariants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--33},
     year = {2018},
     volume = {476},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/}
}
TY  - JOUR
AU  - Yu. S. Belousov
TI  - The semimeander crossing number of knots and related invariants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 20
EP  - 33
VL  - 476
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/
LA  - ru
ID  - ZNSL_2018_476_a1
ER  - 
%0 Journal Article
%A Yu. S. Belousov
%T The semimeander crossing number of knots and related invariants
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 20-33
%V 476
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/
%G ru
%F ZNSL_2018_476_a1
Yu. S. Belousov. The semimeander crossing number of knots and related invariants. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 20-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/

[1] Yu. C. Belousov, A. V. Malyutin, “Prostye dugi v ploskikh krivykh ivd iagrammakh uzlov”, Tr. IMM UrO RAN, 23, no. 4, 2017, 63–76

[2] S. V. Duzhin, Kombinatornye aspekty teorii invariantov Vasileva, Dis. \ldots dokt. fiz.-matem. nauk, S.-Peterburgskoe otd. Mat. in-ta im. V. A. Steklova RAN, Sankt-Peterburg, 2011

[3] G. C. Makanin, “Ob odnom analoge teoremy Aleksandera–Markova”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 200–210 | MR

[4] C. Adams, R. Shinjo, K. Tanaka, “Complementary regions of knot and link diagrams”, Ann. Comb., 15:4 (2011), 549–563 | DOI | MR | Zbl

[5] Yu. Belousov, A. Malyutin, “Estimates on the semi-meandric crossing number of classical knots”, Abstracts of the International Conference “Polynomial Computer Algebra 2017”, 2017, 21–24 | MR

[6] Yu. Belousov, A. Malyutin, Meander diagrams of knots and spatial graphs: proofs of generalized Jablan–Radović conjectures, 2018, arXiv: 1803.10879

[7] Yu. Belousov, Program for generating alpha-strings, , 2018 github.com/YuryBelousov/Alpha-strings

[8] G. Burde, H. Zieschang, Knots, Walter de Gruyter Co., Berlin, 2003 | MR | Zbl

[9] C. Even-Zohar, J. Hass, N. Linial, T. Nowik, Universal knot diagrams, 2018, arXiv: 1804.09860

[10] G. Hotz, “Arkadenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe”, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 132–148 | DOI | MR | Zbl

[11] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, Basel, 1996 | MR | Zbl

[12] W. Menasco, M. Thistlethwaite, “The Tait flyping conjecture”, Bull. Amer. Math. Soc., 25:2 (1991), 403–412 | DOI | MR | Zbl

[13] W. Menasco, M. Thistlethwaite, “The classification of alternating links”, Ann. Math., 138:1 (1993), 113–171 | DOI | MR | Zbl

[14] N. Owad, Straight knots, 2018, arXiv: 1801.10428

[15] M. Ozawa, Edge number of knots and links, 2007, arXiv: 0705.4348

[16] L. Radović, S. Jablan, “Meander knots and links”, Filomat, 29:10 (2015), 2381–2392 | DOI | MR | Zbl

[17] D. Rolfsen, Knots and Links, Perish Press, Berkeley, Calif., 1976 | MR | Zbl