@article{ZNSL_2018_476_a1,
author = {Yu. S. Belousov},
title = {The semimeander crossing number of knots and related invariants},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {20--33},
year = {2018},
volume = {476},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/}
}
Yu. S. Belousov. The semimeander crossing number of knots and related invariants. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 13, Tome 476 (2018), pp. 20-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_476_a1/
[1] Yu. C. Belousov, A. V. Malyutin, “Prostye dugi v ploskikh krivykh ivd iagrammakh uzlov”, Tr. IMM UrO RAN, 23, no. 4, 2017, 63–76
[2] S. V. Duzhin, Kombinatornye aspekty teorii invariantov Vasileva, Dis. \ldots dokt. fiz.-matem. nauk, S.-Peterburgskoe otd. Mat. in-ta im. V. A. Steklova RAN, Sankt-Peterburg, 2011
[3] G. C. Makanin, “Ob odnom analoge teoremy Aleksandera–Markova”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 200–210 | MR
[4] C. Adams, R. Shinjo, K. Tanaka, “Complementary regions of knot and link diagrams”, Ann. Comb., 15:4 (2011), 549–563 | DOI | MR | Zbl
[5] Yu. Belousov, A. Malyutin, “Estimates on the semi-meandric crossing number of classical knots”, Abstracts of the International Conference “Polynomial Computer Algebra 2017”, 2017, 21–24 | MR
[6] Yu. Belousov, A. Malyutin, Meander diagrams of knots and spatial graphs: proofs of generalized Jablan–Radović conjectures, 2018, arXiv: 1803.10879
[7] Yu. Belousov, Program for generating alpha-strings, , 2018 github.com/YuryBelousov/Alpha-strings
[8] G. Burde, H. Zieschang, Knots, Walter de Gruyter Co., Berlin, 2003 | MR | Zbl
[9] C. Even-Zohar, J. Hass, N. Linial, T. Nowik, Universal knot diagrams, 2018, arXiv: 1804.09860
[10] G. Hotz, “Arkadenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe”, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 132–148 | DOI | MR | Zbl
[11] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, Basel, 1996 | MR | Zbl
[12] W. Menasco, M. Thistlethwaite, “The Tait flyping conjecture”, Bull. Amer. Math. Soc., 25:2 (1991), 403–412 | DOI | MR | Zbl
[13] W. Menasco, M. Thistlethwaite, “The classification of alternating links”, Ann. Math., 138:1 (1993), 113–171 | DOI | MR | Zbl
[14] N. Owad, Straight knots, 2018, arXiv: 1801.10428
[15] M. Ozawa, Edge number of knots and links, 2007, arXiv: 0705.4348
[16] L. Radović, S. Jablan, “Meander knots and links”, Filomat, 29:10 (2015), 2381–2392 | DOI | MR | Zbl
[17] D. Rolfsen, Knots and Links, Perish Press, Berkeley, Calif., 1976 | MR | Zbl