Unrelativised standard commutator formula
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 38-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals $A,B\unlhd R$ of a commutative ring $R$ and all $n\ge3$ the birelative standard commutator formula also holds in the unrelativised form, as $[E(n,A),\mathrm{GL}(n,B)]=[E(n,A),E(n,B)]$ and discuss some obvious corollaries thereof.
@article{ZNSL_2018_470_a2,
     author = {N. Vavilov},
     title = {Unrelativised standard commutator formula},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--49},
     publisher = {mathdoc},
     volume = {470},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/}
}
TY  - JOUR
AU  - N. Vavilov
TI  - Unrelativised standard commutator formula
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 38
EP  - 49
VL  - 470
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/
LA  - en
ID  - ZNSL_2018_470_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%T Unrelativised standard commutator formula
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 38-49
%V 470
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/
%G en
%F ZNSL_2018_470_a2
N. Vavilov. Unrelativised standard commutator formula. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 38-49. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/