Unrelativised standard commutator formula
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 38-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals $A,B\unlhd R$ of a commutative ring $R$ and all $n\ge3$ the birelative standard commutator formula also holds in the unrelativised form, as $[E(n,A),\mathrm{GL}(n,B)]=[E(n,A),E(n,B)]$ and discuss some obvious corollaries thereof.
@article{ZNSL_2018_470_a2,
     author = {N. Vavilov},
     title = {Unrelativised standard commutator formula},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--49},
     year = {2018},
     volume = {470},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/}
}
TY  - JOUR
AU  - N. Vavilov
TI  - Unrelativised standard commutator formula
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 38
EP  - 49
VL  - 470
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/
LA  - en
ID  - ZNSL_2018_470_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%T Unrelativised standard commutator formula
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 38-49
%V 470
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/
%G en
%F ZNSL_2018_470_a2
N. Vavilov. Unrelativised standard commutator formula. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 38-49. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a2/

[1] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR

[2] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ ($n\ge~3$) and $\mathrm{Sp}_{2n}$ ($n\ge2)$”, Publ. Math. Inst. Hautes Études Sci., 33 (1967), 59–137 | DOI | MR | Zbl

[3] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 165 (1985), 27–46 | MR | Zbl

[4] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm K$-theory, Springer, Berlin et al., 1989 | MR

[5] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci., 179:6 (2011), 662–678 | DOI | MR | Zbl

[6] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[7] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators, further applications”, J. Math. Sci., 200:6 (2014), 742–768 | DOI | MR | Zbl

[8] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl

[9] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in Chevalley groups, and applications”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl

[10] R. Hazrat, N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59 (2016), 393–410 | DOI | MR | Zbl

[11] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl

[12] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Commun. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[13] R. Hazrat, Zuhong Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl

[14] A. Leutbecher, “Euklidischer Algorithmus und die Gruppe $\mathrm{GL}_2$”, Math. Ann., 231 (1978), 269–285 | DOI | MR | Zbl

[15] B. Liehl, “On the group $\mathrm{SL}_2$ over orders of arithmetic type”, J. reine angew. Math., 323 (1981), 153–171 | MR | Zbl

[16] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl

[17] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[18] J. L. Mennicke, “Finite factor groups of the unimodular group”, Ann. Math., 81 (1965), 31–37 | DOI | MR | Zbl

[19] J. L. Mennicke, “A remark on the congruence subgroup problem”, Math. Scand., 86:2 (2000), 206–222 | DOI | MR | Zbl

[20] B. Nica, “A true relative of Suslin's normality theorem”, Enseign. Math., 61:1–2 (2015), 151–159 | DOI | MR | Zbl

[21] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl

[22] A. V. Stepanov, “Non-abelian $\mathrm K$-theory for Chevalley groups over rings”, J. Math. Sci., 209:4 (2015), 645–656 | DOI | MR | Zbl

[23] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[24] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[25] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[26] L. N. Vaserstein, “On the group $\mathrm{SL}_2$ over Dedekind rings of arithmetic type”, Mat. USSR Sb., 89:2 (1972), 321–332 | DOI | MR | Zbl

[27] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm K$-Theory (Evanston 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[28] N. Vavilov, “Parabolic subgroups of the full linear group over a Dedekind ring of arithmetical type”, J. Sov. Math., 20:6 (1982), 2546–2555 | DOI | MR | Zbl

[29] N. Vavilov, “On the group $\mathrm{SL}_n$ over a Dedekind domain of arithmetic type”, Vestn. Leningr. Univ. Mat. Mekh. Astron., 1983, no. 2, 5–10 | MR | Zbl

[30] N. A. Vavilov, A. V. Stepanov, “Subgroups of the general linear group over rings that satisfy stability conditions”, Sov. Math., 33:10 (1989), 23–31 | MR | Zbl

[31] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg State Univ. Ser. 1, 41:1 (2008), 5–8 | MR | Zbl

[32] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ. Ser. 1, 43:1 (2010), 12–17 | MR | Zbl

[33] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl

[34] Hong You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR